VMSAv6 30 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
; Copyright 2009 Castle Technology Ltd
;
; Licensed under the Apache License, Version 2.0 (the "License");
; you may not use this file except in compliance with the License.
; You may obtain a copy of the License at
;
;     http://www.apache.org/licenses/LICENSE-2.0
;
; Unless required by applicable law or agreed to in writing, software
; distributed under the License is distributed on an "AS IS" BASIS,
; WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
; See the License for the specific language governing permissions and
; limitations under the License.
;
; > VMSAv6

; MMU interface file - VMSAv6 version

; Created from s.ARM600 by JL 18-Feb-09


; Make sure we aren't being compiled against a CPU that can't possibly support a VMSAv6 MMU

Jeffrey Lee's avatar
Jeffrey Lee committed
24
        ASSERT :LNOT: NoARMv6
25 26 27

        KEEP

Jeffrey Lee's avatar
Jeffrey Lee committed
28 29 30
        ; Convert given page flags to the equivalent temp uncacheable L2PT flags
        MACRO
        GetTempUncache $out, $pageflags, $pcbtrans, $temp
Jeffrey Lee's avatar
Jeffrey Lee committed
31 32 33 34
        ASSERT  $out <> $pageflags
        ASSERT  $out <> $pcbtrans
        ASSERT  $out <> $temp
        ASSERT  $temp <> $pcbtrans
Jeffrey Lee's avatar
Jeffrey Lee committed
35 36 37 38 39 40 41
        ASSERT  DynAreaFlags_CPBits = 7*XCB_P :SHL: 10
        ASSERT  DynAreaFlags_NotCacheable = XCB_NC :SHL: 4
        ASSERT  DynAreaFlags_NotBufferable = XCB_NB :SHL: 4
        AND     $out, $pageflags, #DynAreaFlags_NotCacheable + DynAreaFlags_NotBufferable
        AND     $temp, $pageflags, #DynAreaFlags_CPBits
        ORR     $out, $out, #XCB_TU<<4                      ; treat as temp uncacheable
        ORR     $out, $out, $temp, LSR #10-4
42 43
        MOV     $out, $out, LSR #3
        LDRH    $out, [$pcbtrans, $out]                     ; convert to C, B and TEX bits for this CPU
Jeffrey Lee's avatar
Jeffrey Lee committed
44 45 46 47
        MEND

TempUncache_L2PTMask * L2_B+L2_C+L2_TEX

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
; **************** CAM manipulation utility routines ***********************************

; **************************************************************************************
;
;       BangCamUpdate - Update CAM, MMU for page move, coping with page currently mapped in
;
; mjs Oct 2000
; reworked to use generic ARM ops (vectored to appropriate routines during boot)
;
; First look in the CamEntries table to find the logical address L this physical page is
; currently allocated to. Then check in the Level 2 page tables to see if page L is currently
; at page R2. If it is, then map page L to be inaccessible, otherwise leave page L alone.
; Then map logical page R3 to physical page R2.
;
; in:   r2 = physical page number
;       r3 = logical address (2nd copy if doubly mapped area)
;       r9 = offset from 1st to 2nd copy of doubly mapped area (either source or dest, but not both)
;       r11 = PPL + CB bits
;
; out:  r0, r1, r4, r6 corrupted
;       r2, r3, r5, r7-r12 preserved
;

BangCamUpdate ROUT
        TST     r11, #DynAreaFlags_DoublyMapped ; if moving page to doubly mapped area
        SUBNE   r3, r3, r9                      ; then CAM soft copy holds ptr to 1st copy

Jeffrey Lee's avatar
Jeffrey Lee committed
75
        LDR     r1, =ZeroPage
76
        LDR     r1, [r1, #CamEntriesPointer]
77 78 79
        ADD     r1, r1, r2, LSL #CAM_EntrySizeLog2 ; point at cam entry (logaddr, PPL)
        ASSERT  CAM_LogAddr=0
        ASSERT  CAM_PageFlags=4
80
        LDMIA   r1, {r0, r6}                    ; r0 = current logaddress, r6 = current PPL
81 82
        BIC     r4, r11, #PageFlags_Unsafe
        STMIA   r1, {r3, r4}                    ; store new address, PPL
83
        Push    "r0, r6"                        ; save old logical address, PPL
Jeffrey Lee's avatar
Jeffrey Lee committed
84
        LDR     r1, =ZeroPage+PhysRamTable      ; go through phys RAM table
85 86 87 88 89 90 91 92
        MOV     r6, r2                          ; make copy of r2 (since that must be preserved)
10
        LDMIA   r1!, {r0, r4}                   ; load next address, size
        SUBS    r6, r6, r4, LSR #12             ; subtract off that many pages
        BCS     %BT10                           ; if more than that, go onto next bank

        ADD     r6, r6, r4, LSR #12             ; put back the ones which were too many
        ADD     r0, r0, r6, LSL #12             ; move on address by the number of pages left
93
        LDR     r6, [sp]                        ; reload old logical address
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

; now we have r6 = old logical address, r2 = physical page number, r0 = physical address

        TEQ     r6, r3                          ; TMD 19-Jan-94: if old logaddr = new logaddr, then
        BEQ     %FT20                           ; don't remove page from where it is, to avoid window
                                                ; where page is nowhere.
        LDR     r1, =L2PT
        ADD     r6, r1, r6, LSR #10             ; r6 -> L2PT entry for old log.addr
        MOV     r4, r6, LSR #12                 ; r4 = word offset into L2 for address r6
        LDR     r4, [r1, r4, LSL #2]            ; r4 = L2PT entry for L2PT entry for old log.addr
        TST     r4, #3                          ; if page not there
        BEQ     %FT20                           ; then no point in trying to remove it

        LDR     r4, [r6]                        ; r4 = L2PT entry for old log.addr
        MOV     r4, r4, LSR #12                 ; r4 = physical address for old log.addr
        TEQ     r4, r0, LSR #12                 ; if equal to physical address of page being moved
        BNE     %FT20                           ; if not there, then just put in new page

112
        AND     r4, r11, #PageFlags_Unsafe
113 114 115
        Push    "r0, r3, r11, r14"              ; save phys.addr, new log.addr, new PPL, lr
        ADD     r3, sp, #4*4
        LDMIA   r3, {r3, r11}                   ; reload old logical address, old PPL
116 117 118
        LDR     r0, =DuffEntry                  ; Nothing to do if wasn't mapped in
        ORR     r11, r11, r4
        TEQ     r3, r0
119
        MOV     r0, #0                          ; cause translation fault
120
        BLNE    BangL2PT                        ; map page out
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
        Pull    "r0, r3, r11, r14"
20
        ADD     sp, sp, #8                      ; junk old logical address, PPL
        B       BangCamAltEntry                 ; and branch into BangCam code

; **************************************************************************************
;
;       BangCam - Update CAM, MMU for page move, assuming page currently mapped out
;
; This routine maps a physical page to a given logical address
; It is assumed that the physical page is currently not mapped anywhere else
;
; in:   r2 = physical page number
;       r3 = logical address (2nd copy if doubly mapped)
;       r9 = offset from 1st to 2nd copy of doubly mapped area (either source or dest, but not both)
;       r11 = PPL
;
; out:  r0, r1, r4, r6 corrupted
;       r2, r3, r5, r7-r12 preserved
;
141
; NB The physical page number MUST be in range.
142 143 144 145 146

BangCam ROUT
        TST     r11, #DynAreaFlags_DoublyMapped ; if area doubly mapped
        SUBNE   r3, r3, r9              ; then move ptr to 1st copy

Jeffrey Lee's avatar
Jeffrey Lee committed
147
        LDR     r1, =ZeroPage+PhysRamTable ; go through phys RAM table
148 149 150 151 152 153 154 155 156 157 158 159
        MOV     r6, r2                  ; make copy of r2 (since that must be preserved)
10
        LDMIA   r1!, {r0, r4}           ; load next address, size
        SUBS    r6, r6, r4, LSR #12     ; subtract off that many pages
        BCS     %BT10                   ; if more than that, go onto next bank

        ADD     r6, r6, r4, LSR #12     ; put back the ones which were too many
        ADD     r0, r0, r6, LSL #12     ; move on address by the number of pages left
BangCamAltEntry
        LDR     r4, =DuffEntry          ; check for requests to map a page to nowhere
        TEQ     r4, r3                  ; don't actually map anything to nowhere
        MOVEQ   pc, lr
160
        GetPTE  r0, 4K, r0, r11
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

        LDR     r1, =L2PT               ; point to level 2 page tables

        ;fall through to BangL2PT

;internal entry point for updating L2PT entry
;
; entry: r0 = new L2PT value, r1 -> L2PT, r3 = logical address (4k aligned), r11 = PPL
;
; exit: r0,r1,r4,r6 corrupted
;
BangL2PT                                        ; internal entry point used only by BangCamUpdate
        Push    "lr"
        MOV     r6, r0

176
        TST     r11, #PageFlags_Unsafe
177
        BNE     BangL2PT_unsafe
178

Jeffrey Lee's avatar
Jeffrey Lee committed
179 180 181 182 183 184 185 186
        ;In order to safely map out a cacheable page and remove it from the
        ;cache, we need to perform the following process:
        ;* Make the page uncacheable
        ;* Flush TLB
        ;* Clean+invalidate cache
        ;* Write new mapping (r6)
        ;* Flush TLB
        ;For uncacheable pages we can just do the last two steps
187 188 189
        ;
        TEQ     r6, #0                          ;EQ if mapping out
        TSTEQ   r11, #DynAreaFlags_NotCacheable ;EQ if also cacheable (overcautious for temp uncache+illegal PCB combos)
Jeffrey Lee's avatar
Jeffrey Lee committed
190
        LDR     r4, =ZeroPage
Jeffrey Lee's avatar
Jeffrey Lee committed
191 192 193 194 195 196 197 198 199
        BNE     %FT20
        ; Potentially we could just map as strongly-ordered + XN here
        ; But for safety just go for temp uncacheable (will retain memory type + shareability)
        LDR     lr, [r4, #MMU_PCBTrans]
        GetTempUncache r0, r11, lr, r4
        LDR     lr, [r1, r3, LSR #10]           ;get current L2PT entry
        LDR     r4, =TempUncache_L2PTMask
        BIC     lr, lr, r4                      ;remove current attributes
        ORR     lr, lr, r0
200 201
        STR     lr, [r1, r3, LSR #10]!          ;Make uncacheable
        TST     r11, #DynAreaFlags_DoublyMapped
Jeffrey Lee's avatar
Jeffrey Lee committed
202
        LDR     r4, =ZeroPage
203 204 205
        BEQ     %FT19
        STR     lr, [r1, r9, LSR #10]           ;Update 2nd mapping too if required
        ADD     r0, r3, r9
206
        ARMop   MMU_ChangingEntry,,, r4
207
19
Jeffrey Lee's avatar
Jeffrey Lee committed
208
        MOV     r0, r3
209
        ARMop   MMU_ChangingEntry,,, r4
Jeffrey Lee's avatar
Jeffrey Lee committed
210
        LDR     r1, =L2PT
211

212 213 214 215 216 217 218 219
20      STR     r6, [r1, r3, LSR #10]!          ;update L2PT entry
        TST     r11, #DynAreaFlags_DoublyMapped
        BEQ     %FT21
        STR     r6, [r1, r9, LSR #10]           ;Update 2nd mapping
        MOV     r0, r3
        ARMop   MMU_ChangingUncachedEntry,,, r4 ; TLB flush for 1st mapping
        ADD     r3, r3, r9                      ;restore r3 back to 2nd copy
21
220 221 222
        Pull    "lr"
        MOV     r0, r3
        ARMop   MMU_ChangingUncachedEntry,,tailcall,r4
223

224 225 226 227 228
BangL2PT_unsafe
        STR     r6, [r1, r3, LSR #10]!          ; update level 2 page table (and update pointer so we can use bank-to-bank offset
        TST     r11, #DynAreaFlags_DoublyMapped ; if area doubly mapped
        STRNE   r6, [r1, r9, LSR #10]           ; then store entry for 2nd copy as well
        ADDNE   r3, r3, r9                      ; and point logical address back at 2nd copy
229 230 231
        Pull    "pc"


232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
PPLTransNonShareable                                          ; EL1 EL0
        DCW     (AP_Full * L2_APMult)+L2_SmallPage            ; RWX RWX
        DCW     (AP_Read * L2_APMult)+L2_SmallPage            ; RWX R X
        DCW     (AP_None * L2_APMult)+L2_SmallPage            ; RWX
        DCW     (AP_ROM  * L2_APMult)+L2_SmallPage            ; R X R X
        DCW     (AP_PROM * L2_APMult)+L2_SmallPage            ; R X
        DCW     (AP_Full * L2_APMult)+L2_SmallPage+L2_XN      ; RW  RW
        DCW     (AP_Read * L2_APMult)+L2_SmallPage+L2_XN      ; RW  R
        DCW     (AP_None * L2_APMult)+L2_SmallPage+L2_XN      ; RW
        DCW     (AP_ROM  * L2_APMult)+L2_SmallPage+L2_XN      ; R   R
        DCW     (AP_PROM * L2_APMult)+L2_SmallPage+L2_XN      ; R

PPLTransShareable                                             ; EL1 EL0
        DCW     (AP_Full * L2_APMult)+L2_SmallPage      +L2_S ; RWX RWX
        DCW     (AP_Read * L2_APMult)+L2_SmallPage      +L2_S ; RWX R X
        DCW     (AP_None * L2_APMult)+L2_SmallPage      +L2_S ; RWX
        DCW     (AP_ROM  * L2_APMult)+L2_SmallPage      +L2_S ; R X R X
        DCW     (AP_PROM * L2_APMult)+L2_SmallPage      +L2_S ; R X
        DCW     (AP_Full * L2_APMult)+L2_SmallPage+L2_XN+L2_S ; RW  RW
        DCW     (AP_Read * L2_APMult)+L2_SmallPage+L2_XN+L2_S ; RW  R
        DCW     (AP_None * L2_APMult)+L2_SmallPage+L2_XN+L2_S ; RW
        DCW     (AP_ROM  * L2_APMult)+L2_SmallPage+L2_XN+L2_S ; R   R
        DCW     (AP_PROM * L2_APMult)+L2_SmallPage+L2_XN+L2_S ; R

PPLAccess            ; EL1EL0
                     ; RWXRWX
        GenPPLAccess 2_111111
        GenPPLAccess 2_111101
        GenPPLAccess 2_111000
        GenPPLAccess 2_101101
        GenPPLAccess 2_101000
        GenPPLAccess 2_110110
        GenPPLAccess 2_110100
        GenPPLAccess 2_110000
        GenPPLAccess 2_100100
        GenPPLAccess 2_100000
        DCD     -1
269 270 271 272 273 274 275 276 277

PageShifts
        =       12, 13, 0, 14           ; 1 2 3 4
        =       0,  0,  0, 15           ; 5 6 7 8

        LTORG

; +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
;
Jeffrey Lee's avatar
Jeffrey Lee committed
278
; "VMSAv6"-specific OS_MMUControl code
279 280
;

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
        ; Make current stack page(s) temporarily uncacheable to make cache disable operations safer
        ; In: R0 = OS_Memory 0 flags
ModifyStackCacheability
        Entry   "r1-r2", 24             ; Make up to two pages uncacheable
        ADD     lr, sp, #24+12          ; Get original SP
        STR     lr, [sp, #4]            ; Make current page uncacheable
        ASSERT  (SVCStackAddress :AND: ((1<<20)-1)) = 0 ; Assume MB aligned stack
        TST     lr, #(1<<20)-4096       ; Zero if this is the last stack page
        SUBNE   lr, lr, #4096
        STRNE   lr, [sp, #12+4]         ; Make next page uncacheable
        MOVNE   r2, #2
        MOV     r1, sp
        MOVEQ   r2, #1
        BL      MemoryConvertNoFIQCheck ; Bypass FIQ disable logic within OS_Memory (we've already claimed the FIQ vector)
        EXIT
296

Jeffrey Lee's avatar
Jeffrey Lee committed
297 298 299 300 301 302 303 304
; in:   r0 = 0 (reason code 0, for modify control register)
;       r1 = EOR mask
;       r2 = AND mask
;
;       new control = ((old control AND r2) EOR r1)
;
; out:  r1 = old value
;       r2 = new value
305
MMUControl_ModifyControl ROUT
Jeffrey Lee's avatar
Jeffrey Lee committed
306
        Push    "r0,r3,r4,r5"
307 308 309
        CMP     r1,#0
        CMPEQ   r2,#&FFFFFFFF
        BEQ     MMUC_modcon_readonly
310 311 312 313
        MOV     r3, r1
        MOV     r1, #Service_ClaimFIQ
        SWI     XOS_ServiceCall         ; stop FIQs for safety
        MOV     r1, r3
Jeffrey Lee's avatar
Jeffrey Lee committed
314
        LDR     r3,=ZeroPage
315 316
        MRS     r4, CPSR
        CPSID   if                      ; disable IRQs while we modify soft copy (and possibly switch caches off/on)
317

318 319
        ; We're ARMv6+, just read the real control reg and ignore the soft copy
        ARM_read_control lr
320 321 322
        AND     r2, r2, lr
        EOR     r2, r2, r1
        MOV     r1, lr
323 324 325 326

        ; On some CPUs LDREX/STREX only work on cacheable memory. Allowing the
        ; D-cache to be disabled in this situation is likely to result in near-
        ; instant failure of the OS.
327
        LDR     r5, [r3, #ProcessorFlags]
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
        TST     r5, #CPUFlag_NoDCacheDisable
        ORRNE   r2, r2, #MMUC_C

        ; If we have multiple cache levels, assume it's split caches ontop of a
        ; unified cache. In which case, having mismatched I+D cache settings can
        ; be pretty dangerous due to the IMB ARMops assuming that cleaning to
        ; PoU is sufficient (D-cache on but I-cache off will fail due to the
        ; instruction fetches bypassing the unified cache, D-cache off but
        ; I-cache on will fail because the I-cache will pull code into the
        ; unified cache which an IMB won't clean)
        ; If we have the ability to disable the L2 cache then this would be OK,
        ; but we can't guarantee that ability
        Push    "r1-r4"
        MOV     r1, #1
        ARMop   Cache_Examine,,,r3
        CMP     r0, #0
        Pull    "r1-r4"
        BEQ     %FT04
        LDR     lr, =MMUC_C+MMUC_I
        TST     r2, lr
        ORRNE   r2, r2, lr              ; If one cache is on, force both on

04
351 352 353
        STR     r2, [r3, #MMUControlSoftCopy]
        BIC     lr, r2, r1              ; lr = bits going from 0->1
        TST     lr, #MMUC_C             ; if cache turning on then flush cache before we do it
354 355 356 357 358 359 360 361
        BEQ     %FT05

        ARMop   Cache_InvalidateAll,,,r3 ; D-cache turning on, I-cache invalidate is either necessary (both turning on) or a safe side-effect
        B       %FT10

05
        TST     lr, #MMUC_I
        ARMop   IMB_Full,NE,,r3         ; I-cache turning on, Cache_InvalidateAll could be unsafe
362 363

10
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
        ; If I+D currently enabled, and at least one is turning off, turn off
        ; HAL L2 cache
        TST     r1, #MMUC_C
        TSTNE   r1, #MMUC_I
        BEQ     %FT11
        TST     r2, #MMUC_C
        TSTNE   r2, #MMUC_I
        BNE     %FT11
        LDR     r0, [r3, #Cache_HALDevice]
        TEQ     r0, #0
        BEQ     %FT11
        Push    "r1-r3,r12"
        MOV     lr, pc
        LDR     pc, [r0, #HALDevice_Deactivate]
        Pull    "r1-r3,r12"
11
380 381 382
        BIC     lr, r1, r2              ; lr = bits going from 1->0
        TST     lr, #MMUC_C             ; if cache turning off then clean data cache first
        BEQ     %FT15
383 384 385 386 387
        ; When disabling the data cache we have the problem that modern ARMs generally ignore unexpected cache hits, so any stack usage between us disabling the cache and finishing the clean + invalidate is very unsafe
        ; Solve this problem by making the current pages of the SVC stack temporarily uncacheable for the duration of the dangerous bit
        ; (n.b. making the current stack page uncacheable has the same problems as turning off the cache globally, but OS_Memory 0 has its own workaround for that)
        MOV     r0, #(1<<9)+(2<<14)
        BL      ModifyStackCacheability
388
        ARMop   Cache_CleanAll,,,r3
389 390
15
        ARM_write_control r2
Jeffrey Lee's avatar
Jeffrey Lee committed
391
        myISB   ,lr ; Must be running on >=ARMv6, so perform ISB to ensure CP15 write is complete
392 393
        BIC     lr, r1, r2              ; lr = bits going from 1->0
        TST     lr, #MMUC_C             ; if cache turning off then flush cache afterwards
394 395 396 397 398 399
        BEQ     %FT17
        LDR     r3,=ZeroPage
        ARMop   Cache_InvalidateAll,,,r3 ; D-cache turned off, can safely invalidate I+D
        B       %FT19
17
        TST     lr, #MMUC_I
400
        BEQ     %FT20
Jeffrey Lee's avatar
Jeffrey Lee committed
401
        LDR     r3,=ZeroPage
402 403
        ARMop   IMB_Full,,,r3           ; Only I-cache which turned off, clean D-cache & invalidate I-cache
19
404 405 406 407 408
        ; Undo any stack uncaching we performed above
        BIC     lr, r1, r2
        TST     lr, #MMUC_C
        MOVNE   r0, #(1<<9)+(3<<14)
        BLNE    ModifyStackCacheability
409
20
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
        ; If either I+D was disabled, and now both are turned on, turn on HAL
        ; L2 cache
        TST     r1, #MMUC_C
        TSTNE   r1, #MMUC_I
        BNE     %FT30
        TST     r2, #MMUC_C
        TSTNE   r2, #MMUC_I
        BEQ     %FT30
        LDR     r0, [r3, #Cache_HALDevice]
        TEQ     r0, #0
        BEQ     %FT30
        Push    "r1-r3,r12"
        MOV     lr, pc
        LDR     pc, [r0, #HALDevice_Activate]
        Pull    "r1-r3,r12"
30
426 427 428 429 430 431
        MSR     CPSR_c, r4              ; restore IRQ state
        MOV     r3, r1
        MOV     r1, #Service_ReleaseFIQ
        SWI     XOS_ServiceCall         ; allow FIQs again
        MOV     r1, r3
        CLRV
Jeffrey Lee's avatar
Jeffrey Lee committed
432
        Pull    "r0,r3,r4,r5,pc"
433 434

MMUC_modcon_readonly
Jeffrey Lee's avatar
Jeffrey Lee committed
435
        LDR     r3, =ZeroPage
436 437 438 439
        ; We're ARMv6+, just read the real control reg and ignore the soft copy
        ARM_read_control r1
        STR     r1, [r3, #MMUControlSoftCopy]
        MOV     r2, r1
Jeffrey Lee's avatar
Jeffrey Lee committed
440
        Pull    "r0,r3,r4,r5,pc"
441

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
; PPLTrans should contain L2_AP + L2_XN + L2_S + L2_SmallPage
; PCBTrans should contain L2_C + L2_B + L2_TEX

; In:
; r0 = phys addr (aligned)
; r1 = page flags:
;      APBits
;      NotBufferable
;      NotCacheable
;      CPBits
;      PageFlags_TempUncacheableBits
; r2 -> PPLTrans
; r3 -> PCBTrans
; Out:
; r0 = PTE for 4K page ("small page")
Get4KPTE ROUT
        Entry   "r4"
        AND     lr, r1, #DynAreaFlags_APBits
        MOV     lr, lr, LSL #1
        LDRH    lr, [r2, lr]
        ; Insert AP bits, page type/size, etc.
        ORR     r0, r0, lr
        ; Insert CB+TEX bits
        ASSERT  DynAreaFlags_CPBits = 7*XCB_P :SHL: 10
        ASSERT  DynAreaFlags_NotCacheable = XCB_NC :SHL: 4
        ASSERT  DynAreaFlags_NotBufferable = XCB_NB :SHL: 4
        TST     r1, #PageFlags_TempUncacheableBits
        AND     r4, r1, #DynAreaFlags_NotCacheable + DynAreaFlags_NotBufferable
        AND     lr, r1, #DynAreaFlags_CPBits
        ORRNE   r4, r4, #XCB_TU<<4                      ; if temp uncache, set TU bit
        ORR     r4, r4, lr, LSR #10-4
473 474
        MOV     r4, r4, LSR #3
        LDRH    r4, [r3, r4]                            ; convert to TEX, C and B bits for this CPU
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
        ORR     r0, r0, r4
        EXIT

; In:
; As per Get4KPTE
; Out:
; r0 = PTE for 64K page ("large page")
Get64KPTE ROUT
        Entry   "r4"
        AND     lr, r1, #DynAreaFlags_APBits
        MOV     lr, lr, LSL #1
        LDRH    lr, [r2, lr]
        ; Remap XN bit, page type
        AND     r4, lr, #L2_XN
        BIC     lr, lr, #3
        ORR     r0, r0, #L2_LargePage
        ASSERT  L2L_XN = L2_XN :SHL: 15
        ORR     r0, r0, r4, LSL #15
        ; Insert AP, S bits
        ORR     r0, r0, lr
50
        ; Insert CB+TEX bits
        ; Shared with Get1MPTE
        ASSERT  DynAreaFlags_CPBits = 7*XCB_P :SHL: 10
        ASSERT  DynAreaFlags_NotCacheable = XCB_NC :SHL: 4
        ASSERT  DynAreaFlags_NotBufferable = XCB_NB :SHL: 4
        TST     r1, #PageFlags_TempUncacheableBits
        AND     r4, r1, #DynAreaFlags_NotCacheable + DynAreaFlags_NotBufferable
        AND     lr, r1, #DynAreaFlags_CPBits
        ORRNE   r4, r4, #XCB_TU<<4                      ; if temp uncache, set TU bit
        ORR     r4, r4, lr, LSR #10-4
506 507
        MOV     r4, r4, LSR #3
        LDRH    r4, [r3, r4]                            ; convert to TEX, C and B bits for this CPU
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
        ; Move TEX field up
        ORR     r4, r4, r4, LSL #L2L_TEXShift-L2_TEXShift
        BIC     r4, r4, #L2_TEX :OR: ((L2_C+L2_B) :SHL: (L2L_TEXShift-L2_TEXShift))
        ORR     r0, r0, r4
        EXIT

; In:
; As per Get4KPTE
; Out:
; r0 = PTE for 1M page ("section")
Get1MPTE
        ALTENTRY
        AND     lr, r1, #DynAreaFlags_APBits
        MOV     lr, lr, LSL #1
        LDRH    lr, [r2, lr]
        ; Remap XN bit, page type
        AND     r4, lr, #L2_XN
        AND     lr, lr, #L2_AP + L2_S
        ORR     r0, r0, #L1_Section
        ASSERT  L1_XN = L2_XN :SHL: 4
        ORR     r0, r0, r4, LSL #4
        ; Insert AP, S bits
        ASSERT  L1_APShift-L2_APShift=6
        ASSERT  L1_S = L2_S :SHL: 6
        ORR     r0, r0, lr, LSL #6
        ; Insert CB+TEX bits
        ASSERT  L1_C = L2_C
        ASSERT  L1_B = L2_B
        ASSERT  L1_TEXShift = L2L_TEXShift
        B       %BT50

; In:
; r0 = L2PT entry
; Out:
; r0 = phys addr
; r1 = page flags
;      or -1 if fault
; r2 = page size (bytes)
DecodeL2Entry   ROUT
        TST     r0, #3
        MOVEQ   r1, #-1
        MOVEQ   pc, lr
        Entry   "r3-r5"
        ; Find entry in PPL table
        LDR     r3, =ZeroPage
        LDR     r2, =L2_AP+L2_XN ; L2_S ignored, pages should either be all shareable or all not shareable
        LDR     r3, [r3, #MMU_PPLTrans]
        AND     r4, r2, r0
        ; Get XN
        ASSERT  L2_XN = 1
        ASSERT  L2_SmallPage = 2
        ASSERT  L2_LargePage = 1
        TST     r0, #L2_SmallPage ; EQ if LargePage
        TSTEQ   r0, #L2L_XN
        BICEQ   r4, r4, #L2_XN ; Large page with no XN, so clear the fake XN flag we picked up earlier
        MOV     r1, #0
10
        LDRH    r5, [r3, r1]
        AND     r5, r5, r2
        CMP     r5, r4
        ADDNE   r1, r1, #2
        BNE     %BT10
        ; Remap TEX+CB so that they're in the same position as a small page entry
        TST     r0, #L2_SmallPage ; EQ if LargePage
        MOV     r4, #L2_C+L2_B
        ORRNE   r4, r4, #L2_TEX
        AND     r4, r0, r4
        ANDEQ   lr, r0, #L2L_TEX
        ORREQ   r4, r4, lr, LSR #L2L_TEXShift-L2_TEXShift
        ; Align phys addr to page size and set up R2
        MOV     r0, r0, LSR #12
        BICEQ   r0, r0, #15
        MOV     r0, r0, LSL #12
        MOVEQ   r2, #65536
        MOVNE   r2, #4096
20
        ; Search through PCBTrans for a match on TEX+CB (shared with L1 decoding)
        ; Funny order is used so that NCNB is preferred over other variants (since NCNB is common fallback)
        LDR     r3, =ZeroPage
        MOV     r1, r1, LSR #1
        LDR     r3, [r3, #MMU_PCBTrans]
589
        MOV     lr, #3*2
590
30
591
        LDRH    r5, [r3, lr]
592 593
        CMP     r5, r4
        BEQ     %FT40
594 595 596 597
        TST     lr, #2_11*2
        SUBNE   lr, lr, #1*2                    ; loop goes 3,2,1,0,7,6,5,4,...,31,30,29,28
        ADDEQ   lr, lr, #7*2
        TEQ     lr, #35*2
598 599 600 601 602 603 604
        BNE     %BT30                           ; Give up if end of table reached
40
        ; Decode index back into page flags
        ; n.b. temp uncache is ignored (no way we can differentiate between real uncached)
        ASSERT  DynAreaFlags_CPBits = 7*XCB_P :SHL: 10
        ASSERT  DynAreaFlags_NotCacheable = XCB_NC :SHL: 4
        ASSERT  DynAreaFlags_NotBufferable = XCB_NB :SHL: 4
605 606 607 608
        AND     r4, lr, #(XCB_NC+XCB_NB)*2
        AND     lr, lr, #7*XCB_P*2
        ORR     r1, r1, r4, LSL #4-1
        ORR     r1, r1, lr, LSL #10-1
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
        EXIT

; In:
; r0 = L1PT entry
; Out:
; r0 = phys addr
; r1 = page flags if 1MB page
;      or -1 if fault
;      or -2 if page table ptr
DecodeL1Entry
        ALTENTRY
        AND     r1, r0, #3
        ASSERT  L1_Fault < L1_Page
        ASSERT  L1_Page < L1_Section
        CMP     r1, #L1_Page
        BGT     %FT50
        MOVLT   r1, #-1
        MOVEQ   r1, #-2
        MOVEQ   r0, r0, LSR #10
        MOVEQ   r0, r0, LSL #10
        EXIT
50
        ; Find entry in PPL table
        LDR     r3, =ZeroPage
        LDR     lr, =L2_AP
        LDR     r3, [r3, #MMU_PPLTrans]
        ASSERT  L1_APShift = L2_APShift+6
        AND     r4, lr, r0, LSR #6
        TST     r0, #L1_XN
        ORRNE   r4, r4, #L2_XN
        ORR     lr, lr, #L2_XN
        MOV     r1, #0
60
        LDRH    r5, [r3, r1]
        AND     r5, r5, lr
        CMP     r5, r4
        ADDNE   r1, r1, #2
        BNE     %BT60
        ; Remap TEX+CB so that they're in the same position as a small page entry
        ASSERT  L1_C = L2_C
        ASSERT  L1_B = L2_B
        AND     r4, r0, #L1_C+L1_B
        AND     lr, r0, #L1_TEX
        ORR     r4, r4, lr, LSR #L1_TEXShift-L2_TEXShift
        ; Align phys addr to page size
        MOV     r0, r0, LSR #20
        MOV     r0, r0, LSL #20
        ; Now search through PCBTrans for a match
        B       %BT20

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
; In:
; r0 = phys addr (aligned)
; r1 -> ZeroPage
; Out:
; TTBR0 and any other related registers updated
; If MMU is currently on, it's assumed the mapping of ROM+stack will not be
; affected by this change
SetTTBR ROUT
        Entry   "r0,r2-r3"
        ; Do static setup of some registers
        MOV     lr, #0
        MCR     p15, 0, lr, c2, c0, 2           ; TTBCR: Ensure only TTBR0 is used
        ; Check if security extensions are supported
        ARM_read_ID r2
        AND     r2, r2, #&F<<16
        CMP     r2, #ARMvF<<16
        BNE     %FT01
        MRC     p15, 0, r2, c0, c1, 1           ; ID_PFR1
        TST     r2, #15<<4
        BEQ     %FT01
        MCR     p15, 0, lr, c12, c0, 0          ; VBAR: Ensure exception vector base is 0 (security extensions)
01
        ; Now update TTBR0
        ; If we're using shareable pages, set the appropriate flag in the TTBR to let the CPU know the page tables themselves are shareable
        LDR     lr, [r1, #MMU_PPLTrans]
        LDRH    lr, [lr]
        TST     lr, #L2_S
        ORRNE   r0, r0, #2
        ; Deal with specifying the cache policy
        ; First get the XCBTable entry that corresponds to the page flags
        ; n.b. temp uncacheability is ignored here
        LDR     lr, [r1, #PageTable_PageFlags]
        ASSERT  DynAreaFlags_CPBits = 7*XCB_P :SHL: 10
        ASSERT  DynAreaFlags_NotCacheable = XCB_NC :SHL: 4
        ASSERT  DynAreaFlags_NotBufferable = XCB_NB :SHL: 4
        AND     r2, lr, #DynAreaFlags_NotCacheable + DynAreaFlags_NotBufferable
        AND     lr, lr, #DynAreaFlags_CPBits
        LDR     r3, [r1, #MMU_PCBTrans]
        ORR     r2, r2, lr, LSR #10-4
        MOV     r2, r2, LSR #3
        LDRH    r2, [r3, r2]                    ; convert to C, B and TEX bits for this CPU
        ; Now decode the inner & outer cacheability specified in these flags
        TST     r2, #4:SHL:L2_TEXShift
        BEQ     %FT50                           ; Not Normal memory, or not using expected flag encodings, so leave as NC
        AND     r3, r2, #3:SHL:L2_TEXShift      ; Get outer cacheability ...
        ASSERT  L2_TEXShift > 3
        ORR     r0, r0, r3, LSR #L2_TEXShift-3  ; ... put in bits 3 & 4
        ; For inner cacheability, the TTBR format is different depending on
        ; whether the multiprocessing extensions are implemented
        MRC     p15, 0, lr, c0, c0, 1           ; Cache type register
        TST     lr, #1<<31                      ; EQ = ARMv6, NE = ARMv7+
        MRCNE   p15, 0, lr, c0, c0, 5           ; MPIDR
        TSTNE   lr, #1<<31                      ; NE = MP extensions present
        BEQ     %FT20
        ; MP extensions present
        TST     r2, #L2_B                       ; Inner cacheability bit 0 ...
        ORRNE   r0, r0, #1:SHL:6                ; ... goes in IRGN[0]
        TST     r2, #L2_C                       ; Inner cacheability bit 1 ...
        ORRNE   r0, r0, #1                      ; ... goes in IRGN[1]
        B       %FT50
20
        ; MP extensions not present
        ASSERT  VMSAv6_Cache_NC = 0
        TST     r2, #L2_B+L2_C
        ORRNE   r0, r0, #1                      ; Set C bit if any type of inner cacheable
50
        ARM_MMU_transbase r0
        EXIT

 [ CacheablePageTables
; Out: R0 = desired page flags for the page tables
GetPageFlagsForCacheablePageTables ROUT
        ; The ID_MMFR3 register indicates whether the MMU can read from the L1
        ; data cache.
        ; If it can, it means we can use an inner & outer write-back policy.
        ; If it can't, it means the best we can do is inner write-through and
        ; outer write-back (without performing extra cache maintenance, at
        ; least)
        ARM_read_ID r0
        AND     r0, r0, #&F<<16
        CMP     r0, #ARMvF<<16                  ; Check that feature registers are implemented
        BNE     %FT90
        MRC     p15, 0, r0, c0, c1, 7           ; ID_MMFR3
        TST     r0, #&F<<20
        BEQ     %FT90
        ; MMU can read from the L1 cache, so go for default cache policy
        LDR     r0, =AreaFlags_PageTablesAccess
        MOV     pc, lr
90
        ; MMU can't read from the L1 cache, so use inner write-through, outer write-back
        LDR     r0, =AreaFlags_PageTablesAccess :OR: (CP_CB_AlternativeDCache :SHL: DynAreaFlags_CPShift)
        MOV     pc, lr
 ]

753
        END