VMSAv6 56.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
; Copyright 2009 Castle Technology Ltd
;
; Licensed under the Apache License, Version 2.0 (the "License");
; you may not use this file except in compliance with the License.
; You may obtain a copy of the License at
;
;     http://www.apache.org/licenses/LICENSE-2.0
;
; Unless required by applicable law or agreed to in writing, software
; distributed under the License is distributed on an "AS IS" BASIS,
; WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
; See the License for the specific language governing permissions and
; limitations under the License.
;
; > VMSAv6

        GBLL    DebugAborts
DebugAborts SETL {FALSE}


; MMU interface file - VMSAv6 version

; Created from s.ARM600 by JL 18-Feb-09


; Make sure we aren't being compiled against a CPU that can't possibly support a VMSAv6 MMU

        ASSERT HAL32
        ASSERT :LNOT: ECC
        ASSERT :LNOT: ARM6support

OneMByte                EQU     (1024*1024)
SixteenMByte            EQU     (1024*1024 * 16)

        KEEP

; *****************************************************************************

; mjs Oct 2000 kernel/HAL split
; SetDAG stuff is no more, routines like SetVinit now call equivalent HAL
; routine

; **************** CAM manipulation utility routines ***********************************

; **************************************************************************************
;
;       BangCamUpdate - Update CAM, MMU for page move, coping with page currently mapped in
;
; mjs Oct 2000
; reworked to use generic ARM ops (vectored to appropriate routines during boot)
;
; First look in the CamEntries table to find the logical address L this physical page is
; currently allocated to. Then check in the Level 2 page tables to see if page L is currently
; at page R2. If it is, then map page L to be inaccessible, otherwise leave page L alone.
; Then map logical page R3 to physical page R2.
;
; in:   r2 = physical page number
;       r3 = logical address (2nd copy if doubly mapped area)
;       r9 = offset from 1st to 2nd copy of doubly mapped area (either source or dest, but not both)
;       r11 = PPL + CB bits
;
; out:  r0, r1, r4, r6 corrupted
;       r2, r3, r5, r7-r12 preserved
;
; NB Use of stack is allowed in this routine

BangCamUpdate ROUT
        TST     r11, #DynAreaFlags_DoublyMapped ; if moving page to doubly mapped area
        SUBNE   r3, r3, r9                      ; then CAM soft copy holds ptr to 1st copy

        MOV     r1, #0
        LDR     r1, [r1, #CamEntriesPointer]
        ADD     r1, r1, r2, LSL #3              ; point at cam entry (logaddr, PPL)
        LDMIA   r1, {r0, r6}                    ; r0 = current logaddress, r6 = current PPL
        STMIA   r1, {r3, r11}                   ; store new address, PPL
        Push    "r0, r6"                        ; save old logical address, PPL
        MOV     r1, #PhysRamTable               ; go through phys RAM table
        MOV     r6, r2                          ; make copy of r2 (since that must be preserved)
10
        LDMIA   r1!, {r0, r4}                   ; load next address, size
        SUBS    r6, r6, r4, LSR #12             ; subtract off that many pages
        BCS     %BT10                           ; if more than that, go onto next bank

        ADD     r6, r6, r4, LSR #12             ; put back the ones which were too many
        ADD     r0, r0, r6, LSL #12             ; move on address by the number of pages left
        LDMFD   r13, {r6}                       ; reload old logical address

; now we have r6 = old logical address, r2 = physical page number, r0 = physical address

        TEQ     r6, r3                          ; TMD 19-Jan-94: if old logaddr = new logaddr, then
        BEQ     %FT20                           ; don't remove page from where it is, to avoid window
                                                ; where page is nowhere.
        LDR     r1, =L2PT
        ADD     r6, r1, r6, LSR #10             ; r6 -> L2PT entry for old log.addr
        MOV     r4, r6, LSR #12                 ; r4 = word offset into L2 for address r6
        LDR     r4, [r1, r4, LSL #2]            ; r4 = L2PT entry for L2PT entry for old log.addr
        TST     r4, #3                          ; if page not there
        BEQ     %FT20                           ; then no point in trying to remove it

        LDR     r4, [r6]                        ; r4 = L2PT entry for old log.addr
        MOV     r4, r4, LSR #12                 ; r4 = physical address for old log.addr
        TEQ     r4, r0, LSR #12                 ; if equal to physical address of page being moved
        BNE     %FT20                           ; if not there, then just put in new page

        Push    "r0, r3, r11, r14"              ; save phys.addr, new log.addr, new PPL, lr
        ADD     r3, sp, #4*4
        LDMIA   r3, {r3, r11}                   ; reload old logical address, old PPL
        MOV     r0, #0                          ; cause translation fault
        BL      BangL2PT                        ; map page out
        Pull    "r0, r3, r11, r14"
20
        ADD     sp, sp, #8                      ; junk old logical address, PPL
        B       BangCamAltEntry                 ; and branch into BangCam code

; **************************************************************************************
;
;       BangCam - Update CAM, MMU for page move, assuming page currently mapped out
;
; This routine maps a physical page to a given logical address
; It is assumed that the physical page is currently not mapped anywhere else
;
; in:   r2 = physical page number
;       r3 = logical address (2nd copy if doubly mapped)
;       r9 = offset from 1st to 2nd copy of doubly mapped area (either source or dest, but not both)
;       r11 = PPL
;
; out:  r0, r1, r4, r6 corrupted
;       r2, r3, r5, r7-r12 preserved
;
; NB Can't use stack - there might not be one!
;
; NB Also - the physical page number MUST be in range.

; This routine must work in 32-bit mode

BangCam ROUT
        TST     r11, #DynAreaFlags_DoublyMapped ; if area doubly mapped
        SUBNE   r3, r3, r9              ; then move ptr to 1st copy

        MOV     r1, #PhysRamTable       ; go through phys RAM table
        MOV     r6, r2                  ; make copy of r2 (since that must be preserved)
10
        LDMIA   r1!, {r0, r4}           ; load next address, size
        SUBS    r6, r6, r4, LSR #12     ; subtract off that many pages
        BCS     %BT10                   ; if more than that, go onto next bank

        ADD     r6, r6, r4, LSR #12     ; put back the ones which were too many
        ADD     r0, r0, r6, LSL #12     ; move on address by the number of pages left
BangCamAltEntry
        LDR     r4, =DuffEntry          ; check for requests to map a page to nowhere
        ADR     r1, PPLTrans
        TEQ     r4, r3                  ; don't actually map anything to nowhere
        MOVEQ   pc, lr
        AND     r4, r11, #3             ; first use PPL bits
        LDR     r1, [r1, r4, LSL #2]    ; get PPL bits and SmallPage indicator

 [ {FALSE}
        TST     r11, #DynAreaFlags_NotCacheable
        TSTEQ   r11, #PageFlags_TempUncacheableBits
        ORREQ   r1, r1, #L2_C           ; if cacheable (area bit CLEAR + temp count zero), then OR in C bit
        TST     r11, #DynAreaFlags_NotBufferable
        ORREQ   r1, r1, #L2_B           ; if bufferable (area bit CLEAR), then OR in B bit

        ORR     r0, r0, r1
 |
        ASSERT  DynAreaFlags_CPBits = 7 :SHL: 12
        ASSERT  DynAreaFlags_NotCacheable = 1 :SHL: 5
        ASSERT  DynAreaFlags_NotBufferable = 1 :SHL: 4

        ORR     r0, r0, r1

        MOV     r6, #ZeroPage
        LDR     r6, [r6, #MMU_PCBTrans]
        AND     r4, r11, #DynAreaFlags_CPBits
        AND     r1, r11, #DynAreaFlags_NotCacheable + DynAreaFlags_NotBufferable
        TST     r11, #PageFlags_TempUncacheableBits
        ORRNE   r1, r1, #DynAreaFlags_NotCacheable      ; if temp uncache, set NC bit, ignore P
        ORREQ   r1, r1, r4, LSR #6                      ; else use NC, NB and P bits
        LDRB    r1, [r6, r1, LSR #4]                    ; convert to X, C and B bits for this CPU
        ORR     r0, r0, r1
 ]

        LDR     r1, =L2PT               ; point to level 2 page tables

        ;fall through to BangL2PT

;internal entry point for updating L2PT entry
;
; entry: r0 = new L2PT value, r1 -> L2PT, r3 = logical address (4k aligned), r11 = PPL
;
; exit: r0,r1,r4,r6 corrupted
;
BangL2PT                                        ; internal entry point used only by BangCamUpdate
        Push    "lr"
        MOV     r6, r0

        TST     r11, #DynAreaFlags_DoublyMapped
        BNE     BangL2PT_sledgehammer           ;if doubly mapped, don't try to be clever

        ;we sort out cache coherency _before_ remapping, because some ARMs might insist on
        ;that order (write back cache doing write backs to logical addresses)
        ;we need to worry about cache only if mapping out a cacheable page
        ;
        TEQ     r6, #0                          ;EQ if mapping out
        TSTEQ   r11, #DynAreaFlags_NotCacheable ;EQ if also cacheable (overcautious for temp uncache+illegal PCB combos)
        MOV     r0, r3                          ;MMU page entry address
        ADR     lr, %FT20
        MOV     r4, #0
        ARMop   MMU_ChangingEntry, EQ, tailcall, r4
        ARMop   MMU_ChangingUncachedEntry, NE, tailcall, r4

20      STR     r6, [r1, r3, LSR #10]           ;update L2PT entry

        Pull    "pc"

BangL2PT_sledgehammer

        ;sledgehammer is super cautious and does cache/TLB coherency on a global basis
        ;should only be used for awkward cases
        ;
        TEQ     r6, #0                          ;EQ if mapping out
        TSTEQ   r11, #DynAreaFlags_NotCacheable ;EQ if also cacheable (overcautious for temp uncache+illegal PCB combos)
        ADR     lr, %FT30
        MOV     r4, #0
        ARMop   MMU_Changing, EQ, tailcall, r4
        ARMop   MMU_ChangingUncached, NE, tailcall, r4

30      STR     r6, [r1, r3, LSR #10]!          ; update level 2 page table (and update pointer so we can use bank-to-bank offset
        TST     r11, #DynAreaFlags_DoublyMapped ; if area doubly mapped
        STRNE   r6, [r1, r9, LSR #10]           ; then store entry for 2nd copy as well
        ADDNE   r3, r3, r9                      ; and point logical address back at 2nd copy

        Pull    "pc"


PPLTransL1
        &       (AP_Full * L1_APMult) + L1_Section        ; R any W any
        &       (AP_Read * L1_APMult) + L1_Section        ; R any W sup
        &       (AP_None * L1_APMult) + L1_Section        ; R sup W sup
        &       (AP_ROM  * L1_APMult) + L1_Section        ; R any W none

PPLTrans
        &       (AP_Full * L2X_APMult) + L2_ExtPage       ; R any W any
        &       (AP_Read * L2X_APMult) + L2_ExtPage       ; R any W sup
        &       (AP_None * L2X_APMult) + L2_ExtPage       ; R sup W sup
        &       (AP_ROM  * L2X_APMult) + L2_ExtPage       ; R any W none

PPLTransLarge
        &       (AP_Full * L2_APMult) + L2_LargePage      ; R any W any
        &       (AP_Read * L2_APMult) + L2_LargePage      ; R any W sup
        &       (AP_None * L2_APMult) + L2_LargePage      ; R sup W sup
        &       (AP_ROM  * L2_APMult) + L2_LargePage      ; R any W none

PageShifts
        =       12, 13, 0, 14           ; 1 2 3 4
        =       0,  0,  0, 15           ; 5 6 7 8

; +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
; SWI OS_UpdateMEMC: Read/write MEMC1 control register

SSETMEMC ROUT

        AND     r10, r0, r1
        MOV     r12, #0
        WritePSRc SVC_mode+I_bit+F_bit, r0
        LDR     r0, [r12, #MEMC_CR_SoftCopy] ; return old value
        BIC     r11, r0, r1
        ORR     r11, r11, R10
        BIC     r11, r11, #&FF000000
        BIC     r11, r11, #&00F00000
        ORR     r11, r11, #MEMCADR
        STR     r11, [r12, #MEMC_CR_SoftCopy]

; mjs Oct 2000 kernel/HAL split
;
; The kernel itself should now never call this SWI, but grudgingly has
; to maintain at least bit 10 of soft copy
;
; Here, we only mimic action of bit 10 to control video/cursor DMA (eg. for ADFS)
; The whole OS_UpdateMEMC thing would ideally be withdrawn as archaic, but
; unfortunately has not even been deprecated up to now

; for reference, the bits of the MEMC1 control register are:
;
; bits 0,1 => unused
; bits 2,3 => page size, irrelevant since always 4K
; bits 4,5 => low ROM access time (mostly irrelevant but set it up anyway)
; bits 6,7 => hi  ROM access time (definitely irrelevant but set it up anyway)
; bits 8,9 => DRAM refresh control
; bit 10   => Video/cursor DMA enable
; bit 11   => Sound DMA enable
; bit 12   => OS mode

 [ UseGraphicsV
        Push  "r0,r1,r4, r14"
        TST   r11, #(1 :SHL: 10)
        MOVEQ r0, #1             ; blank (video DMA disable)
        MOVNE r0, #0             ; unblank (video DMA enable)
        MOV   r1, #0             ; no funny business with DPMS
        MOV   r4, #GraphicsV_SetBlank
        BL    CallGraphicsV
        Pull  "r0,r1,r4, r14"
 |
        Push  "r0-r3, r9, r14"   ; can corrupt r12
        TST   r11, #(1 :SHL: 10)
        MOVEQ r0, #1             ; blank (video DMA disable)
        MOVNE r0, #0             ; unblank (video DMA enable)
        MOV   r1, #0             ; no funny business with DPMS
        MOV     r0, #0
        MOV     r1
        mjsAddressHAL
        mjsCallHAL    HAL_Video_SetBlank
        Pull  "r0-r3, r9, r14"
 ]

        WritePSRc SVC_mode+I_bit, r11
        ExitSWIHandler


        LTORG

; +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
;
;       SWI OS_MMUControl
;
; in:   r0 = 0 (reason code 0, for modify control register)
;       r1 = EOR mask
;       r2 = AND mask
;
;       new control = ((old control AND r2) EOR r1)
;
; out:  r1 = old value
;       r2 = new value
;
; in:   r0 bits 1 to 28 = 0, bit 0 = 1  (reason code 1, for flush request)
;          r0 bit 31 set if cache(s) to be flushed
;          r0 bit 30 set if TLB(s) to be flushed
;          r0 bit 29 set if flush of entry only (else whole flush)
;          r0 bit 28 set if write buffer to be flushed (implied by bit 31)
;       r1 = entry specifier, if r0 bit 29 set
;       (currently, flushing by entry is ignored, and just does full flush)
;

        ^       0
MMUCReason_ModifyControl        # 1    ; reason code 0
MMUCReason_Flush                # 1    ; reason code 1
MMUCReason_Unknown              # 0

MMUControlSWI   Entry
        BL      MMUControlSub
        PullEnv
        ORRVS   lr, lr, #V_bit
        ExitSWIHandler

MMUControlSub
        Push    lr
        AND     lr,r0,#&FF
        CMP     lr, #MMUCReason_Unknown
        ADDCC   pc, pc, lr, LSL #2
        B       MMUControl_Unknown
        B       MMUControl_ModifyControl
        B       MMUControl_Flush

MMUControl_Unknown
        ADRL    r0, ErrorBlock_HeapBadReason
 [ International
        BL      TranslateError
 ]
        Pull    lr
        SETV
        MOV     pc, lr


MMUControl_ModifyControl ROUT
        Push    "r3,r4,r5"
        CMP     r1,#0
        CMPEQ   r2,#&FFFFFFFF
        BEQ     MMUC_modcon_readonly
        MOV     r3,#0
        LDRB    r5,[r3, #ProcessorArch]
        PHPSEI  r4                      ; disable IRQs while we modify soft copy (and possibly switch caches off/on)

        CMP     r5,#ARMv4
        LDRLO   lr, [r3, #MMUControlSoftCopy]
        ARM_read_control lr,HS
;        MOVHS   lr,lr,LSL #19
;        MOVHS   lr,lr,LSR #19           ; if ARMv4 or later, we can read control reg. - trust this more than soft copy
        AND     r2, r2, lr
        EOR     r2, r2, r1
        MOV     r1, lr
        LDR     r5, [r3, #ProcessorFlags]
        TST     r5, #CPUFlag_SplitCache
        BEQ     %FT05
05
        STR     r2, [r3, #MMUControlSoftCopy]
        BIC     lr, r2, r1              ; lr = bits going from 0->1
        TST     lr, #MMUC_C             ; if cache turning on then flush cache before we do it
        TSTEQ   lr, #MMUC_I
        BEQ     %FT10

        Push    "r0"
        MOV     r0, #0
        ARMop   Cache_InvalidateAll,,,r0
        Pull    "r0"
10
        BIC     lr, r1, r2              ; lr = bits going from 1->0
        TST     lr, #MMUC_C             ; if cache turning off then clean data cache first
        BEQ     %FT15
        Push    "r0"
        MOV     r0, #0
        ARMop   Cache_CleanAll,,,r0
        Pull    "r0"
15
        ARM_write_control r2
415
        myISB ; Must be running on >=ARMv6, so perform ISB to ensure CP15 write is complete
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
        BIC     lr, r1, r2              ; lr = bits going from 1->0
        TST     lr, #MMUC_C             ; if cache turning off then flush cache afterwards
        TSTNE   lr, #MMUC_I
        BEQ     %FT20
        Push    "r0"
        MOV     r0, #0
        ARMop   Cache_InvalidateAll,,,r0
        Pull    "r0"
20
        PLP     r4                      ; restore IRQ state
        Pull    "r3,r4,r5,pc"

MMUC_modcon_readonly
        MOV     r3, #0
        LDRB    r5, [r3, #ProcessorArch]
        CMP     r5, #ARMv4
        LDRLO   lr, [r3, #MMUControlSoftCopy]
        ARM_read_control lr,HS
;        MOVHS   lr,lr,LSL #19
;        MOVHS   lr,lr,LSR #19           ; if ARMv4 or later, we can read control reg. - trust this more than soft copy
        STRHS   lr, [r3, #MMUControlSoftCopy]
        MOV     r1, lr
        MOV     r2, lr
        Pull    "r3,r4,r5,pc"

MMUControl_Flush
       MOVS     r10, r0
       MOV      r12, #0
       ARMop    Cache_CleanInvalidateAll,MI,,r12
       TST      r10,#&40000000
       ARMop    TLB_InvalidateAll,NE,,r12
       TST      r10,#&10000000
       ARMop    WriteBuffer_Drain,NE,,r12
       ADDS     r0,r10,#0
       Pull     "pc"

; +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
;
;       Exception veneers

 [ No26bitCode :LAND: ChocolateAMB
;  Instruction fetch abort pre-veneer, just to field possible lazy AMB aborts
;
PAbPreVeneer    ROUT
        Push    "r0-r7, lr"               ; wahey, we have an abort stack
        SUB     r0, lr_abort, #4          ; aborting address
        MOV     r2, #1
        BL      AMB_LazyFixUp             ; can trash r0-r7, returns NE status if claimed and fixed up
        Pull    "r0-r7, lr", NE           ; restore regs and
        SUBNES  pc, lr_abort, #4          ; restart aborting instruction if fixed up
        LDR     lr, [sp, #8*4]            ; (not a lazy abort) restore lr
        LDR     r0, =PAbHan               ; we want to jump to PAb handler, in abort mode
        LDR     r0, [r0]
        STR     r0, [sp, #8*4]
        Pull    "r0-r7, pc"
 ]

; Preliminary layout of abort indirection nodes

        ^       0
AI_Link #       4
AI_Low  #       4
AI_High #       4
AI_WS   #       4
AI_Addr #       4

        EXPORT DAbPreVeneer

DAbPreVeneer    ROUT

        SUB     r13_abort, r13_abort, #17*4     ; we use stacks, dontcherknow
        STMIA   r13_abort, {r0-r7}              ; save unbanked registers anyway
        STR     lr_abort, [r13_abort, #15*4]    ; save old PC, ie instruction address

490 491 492 493 494 495
        ; Fixup code for MVA-based cache/TLB ops, which can abort on ARMv7 if the specified MVA doesn't have a mapping.
        ; Must come before AMBControl, else things can go very wrong during OS_ChangeDynamicArea
        ; MVA cache ops have the form coproc=p15, CRn=c7, opc1=0, opc2=1
        ; MVA TLB ops have the form coproc=p15, CRn=c8, opc1=0, opc2=1
        ; Note that some non-MVA ops also follow the above rules - at the moment we make no attempt to filter those false-positives out
        ; This code is also written from the perspective of running on an ARMv7 CPU - behaviour under ARMv6 hasn't been checked!
496 497 498 499
        ; Also, as wrong as it seems, attempting to load the aborting instruction could trigger an abort (something wrong with the prefetch handler?)
        ; So this code must protect DFAR, DFSR, spsr_abort, and lr_abort from being clobbered
        MRS     r1, SPSR
        TST     r1, #T32_bit
500
        BNE     %FT10                           ; We don't cope with Thumb ATM. Should really check for Jazelle too!
501 502 503 504 505 506 507 508
        MOV     r2, lr                          ; LR is already saved on the stack, but we can't load from it because any recursive abort won't have a clue what address we're trying to access.
        ; Protect DFAR, DFSR
        ARM_read_FAR r3
        ARM_read_FSR r4
        LDR     r0, [r2, #-8]                   ; Get aborting instruction
        MSR     SPSR_cxsf, r1                   ; un-clobber SPSR, FAR, FSR
        ARM_write_FAR r3
        ARM_write_FSR r4
509 510 511 512 513 514 515 516 517
        CMP     r0, #&F0000000
        BHS     %FT10                           ; Ignore cc=NV, which is MCR2 encoding
        BIC     r0, r0, #&F000000F              ; Mask out the uninteresting bits
        BIC     r0, r0, #&0000F000
        EOR     r0, r0, #&0E000000              ; Desired value, minus CRn
        EOR     r0, r0, #&00000F30
        CMP     r0,     #&00070000              ; CRn=c7?
        CMPNE   r0,     #&00080000              ; CRn=c8?
        BNE     %FT10                           ; It's not an MVA-based op
518 519 520
        MOV     lr_abort, r2                    ; un-clobber LR (doesn't need un-clobbering if it wasn't an MVA op)
        LDMIA   r13_abort, {r0-r4}              ; Restore the regs we intentionally clobbered
        ADD     r13_abort, r13_abort, #17*4
521 522 523
        SUBS    pc, lr_abort, #4                ; Resume execution at the next instruction
10

524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
  [ ChocolateAMB
        ARM_read_FAR r0                         ; aborting address
        MOV     r2, #0
        BL      AMB_LazyFixUp                   ; can trash r0-r7, returns NE status if claimed and fixed up
        LDR     lr_abort, [r13_abort, #15*4]    ; restore lr_abort
        LDMIA   r13_abort, {r0-r7}              ; restore regs
        ADDNE   r13_abort, r13_abort, #17*4     ; if fixed up, restore r13_abort
        SUBNES  pc, lr_abort, #8                ; and restart aborting instruction
  ]

        MRS     r0, SPSR                        ; r0 = PSR when we aborted
        MRS     r1, CPSR                        ; r1 = CPSR
        ADD     r2, r13_abort, #8*4             ; r2 -> saved register bank for r8 onwards

        LDR     r4, =Abort32_dumparea+3*4       ;use temp area (avoid overwriting main area for expected aborts)
        ARM_read_FAR r3
        STMIA   r4, {r0,r3,lr_abort}            ; dump 32-bit PSR, fault address, 32-bit PC

        MOV     r4, lr_abort                    ; move address of aborting instruction into an unbanked register
        BIC     r1, r1, #&1F                    ; knock out current mode bits
        ANDS    r3, r0, #&1F                    ; extract old mode bits (and test for USR26_mode (=0))
        TEQNE   r3, #USR32_mode                 ; if usr26 or usr32 then use ^ to store registers
        STMEQIA r2, {r8-r14}^
        BEQ     %FT05

        ORR     r3, r3, r1                      ; and put in user's
        MSR     CPSR_c, r3                      ; switch to user's mode

        STMIA   r2, {r8-r14}                    ; save the banked registers

        MRS     r5, SPSR                        ; get the SPSR for the aborter's mode
        STR     r5, [r2, #8*4]                  ; and store away in the spare slot on the end
                                                ; (this is needed for LDM with PC and ^)
        ORR     r1, r1, #ABT32_mode
        MSR     CPSR_c, r1                      ; back to abort mode for the rest of this
05
        Push    "r0"                            ; save SPSR_abort

        SUB     sp, sp, #8*4                    ; make room for r8_usr to r14_usr and PC
        STMIA   sp, {r8-r15}^                   ; save USR bank in case STM ^, and also so we can corrupt them

        SUB     r11, r2, #8*4                   ; r11 -> register bank
        STR     r4, [sp, #7*4]                  ; store aborter's PC in user register bank
567
; B %FT90
Ben Avison's avatar
Ben Avison committed
568

569 570 571
        TST     r0, #T32_bit                    ; were they in Thumb mode? if so, give up now
        BNE     %FT90

572
 [ {TRUE}
573
        B       %FT90                           ; Skip the old & broken LDR/STR fixup code and go straight to the exception handler
574 575
 ]

576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
;ARM 810 or StrongARM allow signed byte load or half-word load/stores - not supported at present
;***KJB - need to think about LDRH family
        LDR     r10, [r4, #-8]!                 ; r10 = actual instruction that aborted, and r4 points to it
        AND     r9, r10, #&0E000000
        TEQ     r9, #&08000000                  ; test for LDM/STM
        BNE     %FT50                           ; if not LDM/STM, then it's an "easy" LDR/STR

;        Write   "It's an LDM/STM"

 [ DebugAborts
        DLINE   "It's an LDM/STM"
 ]

; First count the number of transferred registers, and undo any writeback

        MOV     r9, #0                          ; r9 = no. of registers in list
        MOVS    r8, r10, LSL #16
        BEQ     %FT20
10
        MOVS    r8, r8, LSL #1
        ADDCS   r9, r9, #1
        BNE     %BT10
20
        MOV     r8, r10, LSR #16
        AND     r8, r8, #&0F                    ; base register number
        LDR     r7, [r11, r8, LSL #2]           ; ------""----- value

        TST     r10, #1 :SHL: 23                ; test up/down
        MOVNE   r1, r9                          ; if up, r1 = +ve no. of regs
        RSBEQ   r1, r9, #0                      ; if down, r1 = -ve no. of regs

;initially assume writeback
;we want r6 = base reg value before assumed writeback (r7 is base reg value after abort)
;writeback will have been performed for ARMs with CPUFlag_BaseRestored clear
;
        MOV     r6, #0
        LDR     r6, [r6, #ProcessorFlags]
        TST     r6, #CPUFlag_BaseRestored
        MOVNE   r6, r7
        SUBEQ   r6, r7, r1, ASL #2

;now we want r6 to be the base register value before the abort, so we will discard
;our adjusted value and take r7, if the instruction in fact had no writeback
;
        TST     r10, #1 :SHL: 21                ; test if write-back bit set
        TEQNE   r8, #15                         ; (if base is PC then write-back not allowed)
        MOVEQ   r6, r7                          ; if not wb, reg after abort is correct

        MOV     r1, sp                          ; r1 -> end of stack frame, and start of user-mode register bank
        SUB     sp, sp, r9, LSL #2              ; make stack frame for registers
        TST     r10, #1 :SHL: 20                ; if its an STM, we have to load up the stack frame
        BNE     %FT30                           ; but if it's an LDM, we call trap routine first

        STR     r6, [r11, r8, LSL #2]           ; store original base in register list, to be overwritten after 1st transfer

; now go through registers, storing them into frame

        MOV     r5, sp                          ; pointer to position in stack frame
        MOV     lr, r10, LSL #16                ; extract bottom 16 bits
        MOVS    lr, lr, LSR #16                 ; ie bitmask of which registers r0-r15 stored
        BEQ     %FT30                           ; this shouldn't happen (it's illegal)

        MOV     r3, r11                         ; current pointer into register bank
21
        TST     r10, #1 :SHL: 22                ; is it STM with ^
        ANDNE   lr, lr, #&FF                    ; if so then extract bottom 8 bits (r0-r7 on 1st pass, r8-r15 on 2nd)
22
        MOVS    lr, lr, LSR #1                  ; shift bit into carry
        LDRCS   r2, [r3], #4                    ; if set bit then transfer word from register bank
        STRCS   r2, [r5], #4                    ; into stack frame
        STRCS   r7, [r11, r8, LSL #2]           ; and after 1st transfer, store updated base into register bank
        ADDCC   r3, r3, #4                      ; else just increment register bank pointer
        BNE     %BT22                           ; if more bits to do, then loop

        TEQ     r5, r1                          ; have we done all registers?
        MOVNE   lr, r10, LSR #8                 ; no, then must have been doing STM with ^, and have some user-bank regs to store
        MOVNE   r3, r1                          ; so point r3 at user-mode register bank
        BNE     %BT21                           ; and go back into loop

30

; now work out address of 1st transfer

        ANDS    r5, r10, #(3 :SHL: 23)          ; bit 24 set => pre, bit 23 set => inc
        SUBEQ   r2, r6, r9, LSL #2              ; if post-dec, then 1st address = initial-nregs*4+4
        ADDEQ   r2, r2, #4
        BEQ     %FT32

        CMP     r5, #2 :SHL: 23
        MOVCC   r2, r6                          ; CC => post-inc, so 1st address = initial
        SUBEQ   r2, r6, r9, LSL #2              ; EQ => pre-dec,  so 1st address = initial-nregs*4
        ADDHI   r2, r6, #4                      ; HI => pre-inc,  so 1st address = initial+4
32
        ANDS    r0, r10, #1 :SHL: 20            ; r0 = 0 => STM
        MOVNE   r0, #1                          ;    = 1 => LDM
        LDR     r1, [r1, #8*4]                  ; get SPSR_abort
        TST     r1, #&F                         ; test if transfer took place in USR mode
        ORRNE   r0, r0, #2                      ; if not then set bit 1 of flags word in r0
        MOV     r1, sp                          ; block to transfer from/into
        BIC     r2, r2, #3                      ; LDM/STM always present word-aligned address
        MOV     r3, r9, LSL #2                  ; length of transfer in bytes, and r4 still points to aborting instruction
        BL      ProcessTransfer
        ADDVS   sp, sp, r9, LSL #2              ; if invalid transfer then junk stack frame
        BVS     %FT90                           ; and generate an exception

; we transferred successfully, so now check if LDM and load up register bank from block

        TST     r10, #1 :SHL: 20
        ADDEQ   sp, sp, r9, LSL #2              ; it's an STM, so junk stack frame and tidy up
        BEQ     %FT70

; now go through registers, loading them from frame

        ADD     r1, sp, r9, LSL #2              ; r1 -> end of stack frame, and start of user-mode bank registers
        MOV     r5, sp                          ; pointer to position in stack frame
        MOV     r4, r10, LSL #16                ; extract bottom 16 bits
        MOVS    r4, r4, LSR #16                 ; ie bitmask of which registers r0-r15 stored
        BEQ     %FT40                           ; this shouldn't happen (it's illegal)

        SUB     r3, r1, #8*4                    ; r3 -> notional start of user bank, if it began at r0 (it actually starts at r8)
        MOV     r0, #0                          ; assume no user registers by default
        TST     r10, #1 :SHL: 15                ; is PC in list
        BNE     %FT34                           ; then can't be LDM of user bank
        TST     r10, #1 :SHL: 22                ; is it LDM with ^
        BEQ     %FT34                           ; no, then use main bank for all registers
        LDR     r2, [r1, #8*4]                  ; get SPSR
        ANDS    r2, r2, #15                     ; get bottom 4 bits of mode (EQ => USR26 or USR32)
        BEQ     %FT34                           ; if USR mode then use main bank for all
        TEQ     r2, #FIQ26_mode                 ; if FIQ mode then put r8-r14 in user bank
        LDREQ   lr, =&7F00                      ; then put r8-r14 in user bank
        LDRNE   lr, =&6000                      ; else put r13,r14 in user bank
        AND     r0, r4, lr                      ; r0 = mask of registers to put into user bank
        BIC     r4, r4, lr                      ; r4 = mask of registers to put into main bank
        MOV     lr, #0
34
        MOVS    r4, r4, LSR #1                  ; shift bit into carry
        LDRCS   r2, [r5], #4                    ; if set bit then transfer word from stack frame
        STRCS   r2, [r11, lr, LSL #2]           ; into main register bank
        MOVS    r0, r0, LSR #1                  ; shift bit into carry
        LDRCS   r2, [r5], #4                    ; if set bit then transfer word from stack frame
        STRCS   r2, [r3, lr, LSL #2]            ; into user register bank
        ADD     lr, lr, #1
        ORRS    r6, r0, r4                      ; have we finished both banks?
        BNE     %BT34                           ; no, then loop

; If LDM with PC in list, then add 4 to it, so the exit procedure is the same as if PC not loaded
; Also, if it was an LDM with PC and ^, then we have to update the stacked SPSR

40
        MOV     sp, r1                          ; junk frame

        TST     r10, #1 :SHL: 15                ; check PC in list
        ADDNE   r2, r2, #4                      ; since PC is last, r2 will still hold the value loaded
        STRNE   r2, [r11, #15*4]                ; store back into main register bank
        TSTNE   r10, #1 :SHL: 22                ; now check LDM ^
        BEQ     %FT70                           ; [not LDM with PC in list]

        LDR     r9, [sp, #8*4]                  ; get SPSR_abort
        AND     r8, r9, #&1F                    ; r8 = aborter's mode
        TEQ     r8, #USR32_mode                 ; if in USR32
        BEQ     %FT70                           ; then the ^ has no effect (actually uses CPSR)
        TST     r8, #&1C                        ; if 32-bit mode
        LDRNE   r7, [r11, #16*4]                ; then use SPSR for the aborter's mode else use updated r15 in r2 (26-bit format)
        ANDEQ   r7, r2, #&F0000003              ; flag and mode bits in same place
        ANDEQ   r2, r2, #&0C000000              ; but I and F have to move to bits 7 and 6
        ORREQ   r7, r7, r2, LSR #(26-6)

; r7 is now desired PSR (in 32-bit format) to update to
; now check which bits can actually be updated

        TEQ     r8, #USR26_mode
        BICEQ   r9, r9, #&F0000000              ; if USR26 then we can only update NZCV
        ANDEQ   r7, r7, #&F0000000
        ORREQ   r9, r9, r7
        MOVNE   r9, r7                          ; else can update all bits
        STR     r9, [sp, #8*4]                  ; store back updated SPSR_abort (to become CPSR)
        B       %FT70                           ; now tidy up

50

; it's an LDR/STR - first work out offset

 [ DebugAborts
        DLINE   "It's an LDR/STR"
 ]

        TST     r10, #1 :SHL: 25                ; if immediate
        MOVEQ   r9, r10, LSL #(31-11)           ; then extract bottom 12 bits
        MOVEQ   r9, r9, LSR #(31-11)
        BEQ     %FT60

        AND     r8, r10, #&0F                   ; register to shift
        LDR     r9, [r11, r8, LSL #2]           ; get actual value of register

        MOV     r8, r10, LSR #7                 ; extract shift amount
        ANDS    r8, r8, #&1F                    ; (bits 7..11)
        MOVEQ   r8, #32                         ; if zero then make 32

        ANDS    r7, r10, #&60
        ANDEQ   r8, r8, #&1F                    ; LSL 0 is really zero
        MOVEQ   r9, r9, LSL r8
        TEQ     r7, #&20
        MOVEQ   r9, r9, LSR r8
        TEQ     r7, #&40
        MOVEQ   r9, r9, ASR r8
        TEQ     r7, #&60
        MOVEQ   r9, r9, ROR r8                  ; if 32 then we haven't spoilt it!
        TEQEQ   r8, #32                         ; if ROR #32 then really RRX
        BNE     %FT60
        LDR     r7, [sp, #8*4]                  ; get SPSR
        AND     r7, r7, #C_bit
        CMP     r7, #1                          ; set carry from original user
        MOV     r9, r9, RRX
60
        TST     r10, #1 :SHL: 23                ; test for up/down
        RSBEQ   r9, r9, #0                      ; if down then negate

        MOV     r8, #0
        LDR     r8, [r8, #ProcessorFlags]
        TST     r8, #CPUFlag_BaseRestored
        BNE     %FT62
;not base restored
        TST     r10, #1 :SHL: 21                ; if write-back
        MOVNE   r8, #0                          ; then no post-inc
        RSBEQ   r8, r9, #0                      ; else post-inc = - pre-inc
        ADD     r0, r8, r9                      ; amount to subtract off base register for correction

        TST     r10, #1 :SHL: 24                ; however, if we're doing post-increment
        MOVEQ   r8, r9                          ; then post-inc = what was pre-inc
        MOVEQ   r0, r9                          ; and adjustment is what was added on
        RSB     r9, r8, #0                      ; and pre-inc = -post-inc
        B       %FT63
62
;base restored
        TST     r10, #1 :SHL: 21                ; if write-back
        MOVNE   r8, #0                          ; then no post-inc
        RSBEQ   r8, r9, #0                      ; else post-inc = - pre-inc

        TST     r10, #1 :SHL: 24                ; however, if we're doing post-increment
        MOVEQ   r8, r9                          ; then post-inc = what was pre-inc
        MOVEQ   r9, #0                          ; and pre-inc = 0

63
        MOV     r7, r10, LSL #31-19
        MOV     r7, r7, LSR #28                 ; r7 = base register number
        LDR     r6, [r11, r7, LSL #2]           ; r6 = base register value

        MOV     r1, #0
        LDR     r1, [r1, #ProcessorFlags]
        TST     r1, #CPUFlag_BaseRestored
        SUBEQ   r0, r6, r0                      ; compute adjusted base register (if not base restored)
        STREQ   r0, [r11, r7, LSL #2]           ; and store back in case we decide to abort after all

; no need to clear PSR bits out of R15, because PSR is separate

        ADD     r9, r9, r6                      ; r2 = offset+base = illegal address

 [ DebugAborts
        DREG    r9, "Aborting address = "
        DREG    r8, "Post-increment = "
        DREG    r4, "Instruction where abort happened = "
 ]

        ANDS    r0, r10, #1 :SHL: 20            ; if an LDR then bit 20 set
        MOVNE   r0, #1                          ; so make 1
        SUBNE   sp, sp, #4                      ; then just create 1 word stack frame
        BNE     %FT65

        MOV     r5, r10, LSR #12                ; else it's an STR (r0 = 0)
        AND     r5, r5, #&0F                    ; r5 = source register number
        LDR     r5, [r11, r5, LSL #2]           ; r5 = value of source register
 [ DebugAborts
        DREG    r5, "Data value to store = "
 ]
        Push    "r5"                            ; create stack frame with this value in it
65
        LDR     r1, [sp, #(1+8)*4]              ; get SPSR_abort
        TST     r1, #&F                         ; test if transfer took place in USR mode
        ORRNE   r0, r0, #2                      ; if not then set bit 1 of flags word in r0

        MOV     r1, sp                          ; r1 -> data block
        TST     r10, #1 :SHL: 22                ; if byte transfer
        MOVNE   r3, #1                          ; then length of transfer = 1
        MOVNE   r2, r9                          ; and use unmolested address
        MOVEQ   r3, #4                          ; else length = 4
        BICEQ   r2, r9, #3                      ; and mask out bottom 2 bits of address

        BL      ProcessTransfer
        ADDVS   sp, sp, #4                      ; if illegal transfer, junk stack frame
        BVS     %FT90                           ; and cause exception

        ADD     r6, r9, r8                      ; update base register with offset
        STR     r6, [r11, r7, LSL #2]           ; and store back (NB if LDR and dest=base, the load overwrites the updated base)

        TST     r10, #1 :SHL: 20                ; if it's STR (not LDR)
        ADDEQ   sp, sp, #4                      ; then junk stack frame
        BEQ     %FT70                           ; and tidy up

        Pull    "r6"                            ; LDR/LDRB, so get value to load into register
        TST     r10, #1 :SHL: 22                ; if LDRB
        ANDNE   r6, r6, #&FF                    ; then put zero in top 3 bytes of word
        ANDEQ   r9, r9, #3                      ; else rotate word to correct position - r9 = bottom 2 bits of address
        MOVEQ   r9, r9, LSL #3                  ; multiply by 8 to get rotation factor
        MOVEQ   r6, r6, ROR r9                  ; rotate to correct position in register

        MOV     r5, r10, LSR #12                ; test for LDR PC
        AND     r5, r5, #&0F                    ; r5 = dest register number
        TEQ     r5, #15                         ; if PC
        ADDEQ   r6, r6, #4                      ; then adjust for abort exit
        STR     r6, [r11, r5, LSL #2]           ; store into register bank

70

; Tidy up routine, common to LDR/STR and LDM/STM

        ADD     r2, r11, #8*4                   ; point r2 at 2nd half of main register bank
        LDMIA   sp, {r8-r14}^                   ; reload user bank registers
        NOP                                     ; don't access banked registers after LDM^
        ADD     sp, sp, #8*4                    ; junk user bank stack frame

        Pull    "r0"                            ; r0 = (possibly updated) SPSR_abort
        MRS     r1, CPSR

        MRS     r6, SPSR                        ; get original SPSR, with aborter's original mode
        AND     r7, r6, #&0F
        TEQ     r7, #USR26_mode                 ; also matches USR32
        LDMEQIA r2, {r8-r14}^                   ; if user mode then just use ^ to reload registers
        NOP
        BEQ     %FT80

        ORR     r6, r6, #I32_bit                ; use aborter's flags and mode but set I
        BIC     r6, r6, #T32_bit                ; and don't set Thumb bit
        MSR     CPSR_c, r6                      ; switch to aborter's mode
        LDMIA   r2, {r8-r14}                    ; reload banked registers
        MSR     CPSR_c, r1                      ; switch back to ABT32

80
        LDR     lr_abort, [r13_abort, #15*4]    ; get PC to return to
        MSR     SPSR_cxsf, r0                   ; set up new SPSR (may have changed for LDM {PC}^)

        LDMIA   r13_abort, {r0-r7}              ; reload r0-r7
        ADD     r13_abort, r13_abort, #17*4     ; we use stacks, dontcherknow
        SUBS    pc, lr_abort, #4                ; go back 8 to adjust for PC being 2 words out,
                                                ; then forward 4 to skip instruction we've just executed

; Call normal exception handler

90

; copy temp area to real area (we believe this is an unexpected data abort now)

        LDR     r0, =Abort32_dumparea
        LDR     r1, [r0,#3*4]
        STR     r1, [r0]
        LDR     r1, [r0,#4*4]
        STR     r1, [r0,#4]
        LDR     r1, [r0,#5*4]
        STR     r1, [r0,#2*4]

        MOV     r0, #0                                  ; we're going to call abort handler
        STR     r0, [r0, #CDASemaphore]                 ; so allow recovery if we were in CDA

        LDR     r0, =DAbHan
        LDR     r0, [r0]                                ; get address of data abort handler
 [ DebugAborts
        DREG    r0, "Handler address = "
 ]

        ADD     r2, r11, #8*4                   ; point r2 at 2nd half of main register bank
        LDMIA   sp, {r8-r14}^                   ; reload user bank registers
        NOP                                     ; don't access banked registers after LDM^
        ADD     sp, sp, #9*4                    ; junk user bank stack frame + saved SPSR

        MRS     r1, CPSR

        MRS     r6, SPSR                        ; get original SPSR, with aborter's original mode
        AND     r7, r6, #&0F
        TEQ     r7, #USR26_mode                 ; also matches USR32
        LDMEQIA r2, {r8-r14}^                   ; if user mode then just use ^ to reload registers
        NOP
        BEQ     %FT80

        ORR     r6, r6, #I32_bit                ; use aborter's flags and mode but set I
        BIC     r6, r6, #T32_bit                ; and don't set Thumb
        MSR     CPSR_c, r6                      ; switch to aborter's mode
        LDMIA   r2, {r8-r14}                    ; reload banked registers
        MSR     CPSR_c, r1                      ; switch back to ABT32

80
        STR     r0, [r13_abort, #16*4]          ; save handler address at top of stack
        LDR     lr_abort, [r13_abort, #15*4]    ; get abort address back in R14

        LDMIA   r13_abort, {r0-r7}              ; reload r0-r7
        ADD     r13_abort, r13_abort, #16*4     ; we use stacks, dontcherknow

        Pull    pc

; +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
;
;       ProcessTransfer - Process an abort transfer
;
; in:   r0 = flags
;               bit 0 = 0 => Store to memory
;                       1 => Load from memory
;               bit 1 = 0 => Transfer executed in user mode
;                       1 => Transfer executed in non-user mode
;       r1 = block of data to transfer from/into
;       r2 = illegal address
;       r3 = length of transfer in bytes
;       r4 -> instruction which aborted
;       SVC26/32 mode
;
; out:  V=0 => transfer accomplished
;       V=1 => transfer not accomplished
;       All registers preserved
;

SectionSizeShift *      20
SectionSize     *       1 :SHL: SectionSizeShift

LargePageSizeShift *    16
LargePageSize   *       1 :SHL: LargePageSizeShift

SmallPageSizeShift *    12
SmallPageSize   *       1 :SHL: SmallPageSizeShift

ProcessTransfer Entry "r1-r7,r12"

 [ DebugAborts
        DLINE   "ProcessTransfer entered"
        DREG    r2, "Illegal address = "
        DREG    r3, "Length of transfer = "
        DREG    r4, "Abort happened at address "
        DREG    r0, "Flags = "
        DLINE   "Data = ",cc

        MOV     r5, r3
        MOV     r6, r1
01
        LDR     r7, [r6], #4
        DREG    r7," ",cc
        SUBS    r5, r5, #4
        BHI     %BT01
        DLINE   ""
 ]


; First identify if start address should have aborted

10
        LDR     r7, =L1PT
        MOV     lr, r2, LSR #SectionSizeShift           ; r2 as a multiple of 1Mb
        EOR     r5, r2, lr, LSL #SectionSizeShift       ; r5 = offset within section
        SUB     r5, r2, r5                              ; r5 -> start of section containing r2
        ADD     r5, r5, #SectionSize                    ; r5 -> start of section after r2

        LDR     lr, [r7, lr, LSL #2]                    ; get L1PT entry
        ANDS    r7, lr, #3                              ; 00 => trans.fault, 01 => page, 10 => section, 11 => reserved (fault)
        TEQNE   r7, #3
        BEQ     Fault
        TEQ     r7, #1
        BEQ     CheckPage

; it's section mapped - check section access privileges

15
        AND     r7, lr, #L1_AP      ; extract ap, apx
        CMP     r7, #AP_ROM * L1_APMult
        BEQ     Fault                                   ; ROM => no access for anyone (at the moment)
        TST     r0, #2                                  ; test for non-usr access
        BNE     %FT20                                   ; if non-usr then OK to access here
        CMP     r7, #2 * L1_APMult
        BCC     Fault                                   ; 01 => no usr access
        BHI     %FT20                                   ; 11 => full user access, so OK
        TST     r0, #1
        BEQ     Fault                                   ; 10 => usr read-only, so stores not allowed

; access OK, so copy up to end of section/sub-page

20
;ARM 8 and StrongARM will abort for vector reads (as well as writes) in 26bit mode, so we must
;handle vector reads properly as well now
;In fact, StrongARM does not abort (optional in architecture 4), but ARM 8 does - MJS 08-10-96
  [ {FALSE}
        TST     r0, #1                                  ; if load from memory
        BNE     %FT60                                   ; then skip
  ]

; it's a store to memory (may be a vector write), or a read from memory (may be a vector read)
; do it in words if >= 4 bytes, so word writes to VIDC work for example

25
        CMP     r2, #&1C                                ; if in abort area (but allow any access to &1C)
  [ OnlyKernelCanAccessHardwareVectors
        BHS     %FT22
        CMP     r4, #ROM                                ; and executing outside the kernel
        BLO     %FT23
        ADRL    lr, EndOfKernel
        CMP     r4, lr
        BLO     %FT22
23
        MOV     r5, #&20                                ; then set end-of-section = 32
        B       Fault                                   ; and check user list
22
  |
        CMPCC   r4, #ROM                                ; and executing out of RAM
        MOVCC   r5, #&20                                ; then set end-of-section = 32
        BCC     Fault                                   ; and check user list
  ]

        TST     r0, #1                                  ; test for peek/poke
        BEQ     %FT30
26
;peeking
        TEQ     r2, r5                                  ; have we gone onto a new block?
        BEQ     %FT50                                   ; if so then exit if finished else go back to outer loop
        SUBS    r3, r3, #4                              ; have we got at least a word to do?
        LDRCS   lr, [r2], #4                            ; if so then copy word
        STRCS   lr, [r1], #4
        BHI     %BT26                                   ; and if not all done then loop
        BEQ     %FT50                                   ; if all done then switch back to SVC26 and exit

        ADDS    r3, r3, #4
27
        LDRB    lr, [r2], #1                            ; read byte from register bank
        STRB    lr, [r1], #1                            ; and store to memory
        SUBS    r3, r3, #1                              ; decrement byte count
        BEQ     %FT50                                   ; if finished then switch back to SVC26 and exit
        TEQ     r2, r5                                  ; have we gone onto a new block?
        BNE     %BT27                                   ; no, then loop
        B       %FT50

30
;poking
        TEQ     r2, r5                                  ; have we gone onto a new block?
        BEQ     %FT50                                   ; if so then exit if finished else go back to outer loop
        SUBS    r3, r3, #4                              ; have we got at least a word to do?
        LDRCS   lr, [r1], #4                            ; if so then copy word
        STRCS   lr, [r2], #4
        BHI     %BT30                                   ; and if not all done then loop
        BEQ     %FT50                                   ; if all done then switch back to SVC26 and exit

        ADDS    r3, r3, #4
40
        LDRB    lr, [r1], #1                            ; read byte from register bank
        STRB    lr, [r2], #1                            ; and store to memory
        SUBS    r3, r3, #1                              ; decrement byte count
        BEQ     %FT50                                   ; if finished then switch back to SVC26 and exit
        TEQ     r2, r5                                  ; have we gone onto a new block?
        BNE     %BT40                                   ; no, then loop

50
        CMP     r3, #0
        BNE     %BT10
        EXIT                                            ; exit (VC from CMP)

; it's page mapped, so check L2PT
; lr = L1 table entry
; We use the logical copy of physical space here, in order to access the entry pointed to by the L1 entry

CheckPage
        MOV     r5, r2, LSR #SmallPageSizeShift         ; r2 as a multiple of 4K
        MOV     r5, r5, LSL #SmallPageSizeShift
        ADD     r5, r5, #SmallPageSize                  ; if translation fault, then it applies to small page

        MOV     lr, lr, LSR #10                         ; remove domain and U bits
        MOV     lr, lr, LSL #10
        SUB     sp, sp, #4
        Push    "r0-r3,r12"
        MOV     r0, #0
        MOV     r1, lr
        ADD     r2, sp, #5*4
        BL      RISCOS_AccessPhysicalAddress
        MOV     lr, r0
        Pull    "r0-r3,r12"
        AND     r7, r2, #&000FF000                      ; extract bits which are to form L2 offset

        LDR     lr, [lr, r7, LSR #10]                   ; lr = L2PT entry
        Push    "r0-r3,r12,lr"
        LDR     r0, [sp, #6*4]
        BL      RISCOS_ReleasePhysicalAddress
        Pull    "r0-r3,r12,lr"
        ADD     sp, sp, #4
        ANDS    r7, lr, #3                              ; 00 => trans.fault, 01 => large page
                                                        ; 10 => small page, 11 => small page XN (fault)
        TEQNE   r7, #3
        BEQ     Fault
        TEQ     r7, #2                          ; if small page
        MOVEQ   r7, #SmallPageSizeShift-2       ; then sub-page size = 1<<10
        MOVNE   r7, #LargePageSizeShift-2       ; else sub-page size = 1<<14

        MOV     r5, r2, LSR r7                  ; round down to start of sub-page
        MOV     r5, r5, LSL r7
        MOV     r6, #1
        ADD     r5, r5, r6, LSL r7              ; then move on to start of next sub-page

        MOV     r7, r2, LSR r7                  ; put sub-page number in bits 1,2
        AND     r7, r7, #3                      ; and junk other bits
        RSB     r7, r7, #3                      ; invert sub-page ordering
        MOV     r7, r7, LSL #1                  ; and double it
        MOV     lr, lr, LSL r7                  ; then shift up access privileges so that correct ones appear in bits 10,11
        B       %BT15                           ; re-use code to check access privileges

Fault
        SUB     r5, r5, r2                      ; r5 = number of bytes we can do in this section/page/sub-page
        Push    "r3"                            ; save number of bytes to do
        CMP     r3, r5                          ; if more bytes than there are in this block
        MOVHI   r3, r5

; Now scan list of user abort addresses

        MOV     r6, #0
        LDR     r6, [r6, #AbortIndirection]
        TEQ     r6, #0
        BEQ     %FT85                           ; address not in any abort node
75
        LDR     r5, [r6, #AI_Low]
        CMP     r2, r5
        BCC     %FT80
        LDR     r5, [r6, #AI_High]
        CMP     r2, r5
        BCS     %FT80

        Push    "r3"                            ; save number of bytes we can do in this section/page/sub-page
        SUB     r5, r5, r2                      ; number of bytes we can do for this node
        CMP     r3, r5                          ; if bigger than the size of this node
        MOVHI   r3, r5                          ; then restrict number of bytes

        ADD     r5, r6, #AI_WS
        MOV     lr, pc
        LDMIA   r5, {r12, pc}

; returns to here

        ADDVS   sp, sp, #8                      ; if user abort failed, then junk both pushed r3's
        EXIT    VS                              ; and exit

        ADD     r1, r1, r3                      ; advance register block
        ADD     r2, r2, r3                      ; and illegal address pointer

        LDR     r5, [sp, #4]                    ; subtract amount done from stacked total amount to do
        SUBS    r5, r5, r3
        STR     r5, [sp, #4]                    ; and store back

        Pull    "r5"
        SUBS    r3, r5, r3                      ; is there more to do in this section/page/sub-page?
        BEQ     %FT90                           ; no then skip
80
        LDR     r6, [r6, #AI_Link]              ; else try next node
        TEQ     r6, #0
        BNE     %BT75
85
        ADD     sp, sp, #4                      ; junk pushed r3
        SETV                                    ; indicate access invalid
        EXIT                                    ; and exit

90
        Pull    "r3"                            ; restore total amount left to do
        TEQ     r3, #0
        BNE     %BT10                           ; yes, then loop
        EXIT                                    ; no, then exit (V=0 from SUBS)

;
; ---------------- XOS_SynchroniseCodeAreas implementation ---------------
;

;this SWI effectively implements IMB and IMBrange (Instruction Memory Barrier)
;for newer ARMs

;entry:
;   R0 = flags
;        bit 0 set ->  R1,R2 specify virtual address range to synchronise
;                      R1 = start address (word aligned, inclusive)
;                      R2 = end address (word aligned, inclusive)
;        bit 0 clear   synchronise entire virtual space
;        bits 1..31    reserved
;
;exit:
;   R0-R2 preserved
;
SyncCodeAreasSWI ROUT
        Push    "lr"
        BL      SyncCodeAreas
        Pull    "lr"                    ; no error return possible
        B       SLVK

SyncCodeAreas
        TST     R0,#1                   ; range variant of SWI?
        BEQ     SyncCodeAreasFull

SyncCodeAreasRange
        Push    "r0-r2, lr"
        MOV     r0, r1
        ADD     r1, r2, #4                 ;exclusive end address
        MOV     r2, #0
        LDRB    lr, [r2, #Cache_Type]
        CMP     lr, #CT_ctype_WB_CR7_Lx ; DCache_LineLen lin or log?
        LDRB    lr, [r2, #DCache_LineLen]
        MOVEQ   r2, #4
        MOVEQ   lr, r2, LSL lr
        MOVEQ   r2, #0
        SUB     lr, lr, #1
        ADD     r1, r1, lr                 ;rounding up end address
        MVN     lr, lr
        AND     r0, r0, lr                 ;cache line aligned
        AND     r1, r1, lr                 ;cache line aligned
        ARMop   IMB_Range,,,r2
        Pull    "r0-r2, pc"

SyncCodeAreasFull
        Push    "r0, lr"
        MOV     r0, #0
        ARMop   IMB_Full,,,r0
        Pull    "r0, pc"

        LTORG

 [ DebugAborts
        InsertDebugRoutines
 ]
        END