VMSAv6 26 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
; Copyright 2009 Castle Technology Ltd
;
; Licensed under the Apache License, Version 2.0 (the "License");
; you may not use this file except in compliance with the License.
; You may obtain a copy of the License at
;
;     http://www.apache.org/licenses/LICENSE-2.0
;
; Unless required by applicable law or agreed to in writing, software
; distributed under the License is distributed on an "AS IS" BASIS,
; WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
; See the License for the specific language governing permissions and
; limitations under the License.
;
; > VMSAv6

; MMU interface file - VMSAv6 version

; Created from s.ARM600 by JL 18-Feb-09


; Make sure we aren't being compiled against a CPU that can't possibly support a VMSAv6 MMU

Jeffrey Lee's avatar
Jeffrey Lee committed
24
        ASSERT :LNOT: NoARMv6
25 26 27

        KEEP

Jeffrey Lee's avatar
Jeffrey Lee committed
28 29 30
        ; Convert given page flags to the equivalent temp uncacheable L2PT flags
        MACRO
        GetTempUncache $out, $pageflags, $pcbtrans, $temp
Jeffrey Lee's avatar
Jeffrey Lee committed
31 32 33 34
        ASSERT  $out <> $pageflags
        ASSERT  $out <> $pcbtrans
        ASSERT  $out <> $temp
        ASSERT  $temp <> $pcbtrans
Jeffrey Lee's avatar
Jeffrey Lee committed
35 36 37 38 39 40 41 42 43 44 45 46
        ASSERT  DynAreaFlags_CPBits = 7*XCB_P :SHL: 10
        ASSERT  DynAreaFlags_NotCacheable = XCB_NC :SHL: 4
        ASSERT  DynAreaFlags_NotBufferable = XCB_NB :SHL: 4
        AND     $out, $pageflags, #DynAreaFlags_NotCacheable + DynAreaFlags_NotBufferable
        AND     $temp, $pageflags, #DynAreaFlags_CPBits
        ORR     $out, $out, #XCB_TU<<4                      ; treat as temp uncacheable
        ORR     $out, $out, $temp, LSR #10-4
        LDRB    $out, [$pcbtrans, $out, LSR #4]             ; convert to X, C and B bits for this CPU
        MEND

TempUncache_L2PTMask * L2_B+L2_C+L2_TEX

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
; **************** CAM manipulation utility routines ***********************************

; **************************************************************************************
;
;       BangCamUpdate - Update CAM, MMU for page move, coping with page currently mapped in
;
; mjs Oct 2000
; reworked to use generic ARM ops (vectored to appropriate routines during boot)
;
; First look in the CamEntries table to find the logical address L this physical page is
; currently allocated to. Then check in the Level 2 page tables to see if page L is currently
; at page R2. If it is, then map page L to be inaccessible, otherwise leave page L alone.
; Then map logical page R3 to physical page R2.
;
; in:   r2 = physical page number
;       r3 = logical address (2nd copy if doubly mapped area)
;       r9 = offset from 1st to 2nd copy of doubly mapped area (either source or dest, but not both)
;       r11 = PPL + CB bits
;
; out:  r0, r1, r4, r6 corrupted
;       r2, r3, r5, r7-r12 preserved
;

BangCamUpdate ROUT
        TST     r11, #DynAreaFlags_DoublyMapped ; if moving page to doubly mapped area
        SUBNE   r3, r3, r9                      ; then CAM soft copy holds ptr to 1st copy

Jeffrey Lee's avatar
Jeffrey Lee committed
74
        LDR     r1, =ZeroPage
75
        LDR     r1, [r1, #CamEntriesPointer]
76 77 78
        ADD     r1, r1, r2, LSL #CAM_EntrySizeLog2 ; point at cam entry (logaddr, PPL)
        ASSERT  CAM_LogAddr=0
        ASSERT  CAM_PageFlags=4
79
        LDMIA   r1, {r0, r6}                    ; r0 = current logaddress, r6 = current PPL
80 81
        BIC     r4, r11, #PageFlags_Unsafe
        STMIA   r1, {r3, r4}                    ; store new address, PPL
82
        Push    "r0, r6"                        ; save old logical address, PPL
Jeffrey Lee's avatar
Jeffrey Lee committed
83
        LDR     r1, =ZeroPage+PhysRamTable      ; go through phys RAM table
84 85 86 87 88 89 90 91
        MOV     r6, r2                          ; make copy of r2 (since that must be preserved)
10
        LDMIA   r1!, {r0, r4}                   ; load next address, size
        SUBS    r6, r6, r4, LSR #12             ; subtract off that many pages
        BCS     %BT10                           ; if more than that, go onto next bank

        ADD     r6, r6, r4, LSR #12             ; put back the ones which were too many
        ADD     r0, r0, r6, LSL #12             ; move on address by the number of pages left
92
        LDR     r6, [sp]                        ; reload old logical address
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

; now we have r6 = old logical address, r2 = physical page number, r0 = physical address

        TEQ     r6, r3                          ; TMD 19-Jan-94: if old logaddr = new logaddr, then
        BEQ     %FT20                           ; don't remove page from where it is, to avoid window
                                                ; where page is nowhere.
        LDR     r1, =L2PT
        ADD     r6, r1, r6, LSR #10             ; r6 -> L2PT entry for old log.addr
        MOV     r4, r6, LSR #12                 ; r4 = word offset into L2 for address r6
        LDR     r4, [r1, r4, LSL #2]            ; r4 = L2PT entry for L2PT entry for old log.addr
        TST     r4, #3                          ; if page not there
        BEQ     %FT20                           ; then no point in trying to remove it

        LDR     r4, [r6]                        ; r4 = L2PT entry for old log.addr
        MOV     r4, r4, LSR #12                 ; r4 = physical address for old log.addr
        TEQ     r4, r0, LSR #12                 ; if equal to physical address of page being moved
        BNE     %FT20                           ; if not there, then just put in new page

111
        AND     r4, r11, #PageFlags_Unsafe
112 113 114
        Push    "r0, r3, r11, r14"              ; save phys.addr, new log.addr, new PPL, lr
        ADD     r3, sp, #4*4
        LDMIA   r3, {r3, r11}                   ; reload old logical address, old PPL
115 116 117
        LDR     r0, =DuffEntry                  ; Nothing to do if wasn't mapped in
        ORR     r11, r11, r4
        TEQ     r3, r0
118
        MOV     r0, #0                          ; cause translation fault
119
        BLNE    BangL2PT                        ; map page out
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
        Pull    "r0, r3, r11, r14"
20
        ADD     sp, sp, #8                      ; junk old logical address, PPL
        B       BangCamAltEntry                 ; and branch into BangCam code

; **************************************************************************************
;
;       BangCam - Update CAM, MMU for page move, assuming page currently mapped out
;
; This routine maps a physical page to a given logical address
; It is assumed that the physical page is currently not mapped anywhere else
;
; in:   r2 = physical page number
;       r3 = logical address (2nd copy if doubly mapped)
;       r9 = offset from 1st to 2nd copy of doubly mapped area (either source or dest, but not both)
;       r11 = PPL
;
; out:  r0, r1, r4, r6 corrupted
;       r2, r3, r5, r7-r12 preserved
;
140
; NB The physical page number MUST be in range.
141 142 143 144 145

BangCam ROUT
        TST     r11, #DynAreaFlags_DoublyMapped ; if area doubly mapped
        SUBNE   r3, r3, r9              ; then move ptr to 1st copy

Jeffrey Lee's avatar
Jeffrey Lee committed
146
        LDR     r1, =ZeroPage+PhysRamTable ; go through phys RAM table
147 148 149 150 151 152 153 154 155 156 157 158
        MOV     r6, r2                  ; make copy of r2 (since that must be preserved)
10
        LDMIA   r1!, {r0, r4}           ; load next address, size
        SUBS    r6, r6, r4, LSR #12     ; subtract off that many pages
        BCS     %BT10                   ; if more than that, go onto next bank

        ADD     r6, r6, r4, LSR #12     ; put back the ones which were too many
        ADD     r0, r0, r6, LSL #12     ; move on address by the number of pages left
BangCamAltEntry
        LDR     r4, =DuffEntry          ; check for requests to map a page to nowhere
        TEQ     r4, r3                  ; don't actually map anything to nowhere
        MOVEQ   pc, lr
159
        GetPTE  r0, 4K, r0, r11
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174

        LDR     r1, =L2PT               ; point to level 2 page tables

        ;fall through to BangL2PT

;internal entry point for updating L2PT entry
;
; entry: r0 = new L2PT value, r1 -> L2PT, r3 = logical address (4k aligned), r11 = PPL
;
; exit: r0,r1,r4,r6 corrupted
;
BangL2PT                                        ; internal entry point used only by BangCamUpdate
        Push    "lr"
        MOV     r6, r0

175
        TST     r11, #PageFlags_Unsafe
176
        BNE     BangL2PT_unsafe
177

Jeffrey Lee's avatar
Jeffrey Lee committed
178 179 180 181 182 183 184 185
        ;In order to safely map out a cacheable page and remove it from the
        ;cache, we need to perform the following process:
        ;* Make the page uncacheable
        ;* Flush TLB
        ;* Clean+invalidate cache
        ;* Write new mapping (r6)
        ;* Flush TLB
        ;For uncacheable pages we can just do the last two steps
186 187 188
        ;
        TEQ     r6, #0                          ;EQ if mapping out
        TSTEQ   r11, #DynAreaFlags_NotCacheable ;EQ if also cacheable (overcautious for temp uncache+illegal PCB combos)
Jeffrey Lee's avatar
Jeffrey Lee committed
189
        LDR     r4, =ZeroPage
Jeffrey Lee's avatar
Jeffrey Lee committed
190 191 192 193 194 195 196 197 198
        BNE     %FT20
        ; Potentially we could just map as strongly-ordered + XN here
        ; But for safety just go for temp uncacheable (will retain memory type + shareability)
        LDR     lr, [r4, #MMU_PCBTrans]
        GetTempUncache r0, r11, lr, r4
        LDR     lr, [r1, r3, LSR #10]           ;get current L2PT entry
        LDR     r4, =TempUncache_L2PTMask
        BIC     lr, lr, r4                      ;remove current attributes
        ORR     lr, lr, r0
199 200
        STR     lr, [r1, r3, LSR #10]!          ;Make uncacheable
        TST     r11, #DynAreaFlags_DoublyMapped
Jeffrey Lee's avatar
Jeffrey Lee committed
201
        LDR     r4, =ZeroPage
202 203 204 205 206 207 208 209
        BEQ     %FT19
        STR     lr, [r1, r9, LSR #10]           ;Update 2nd mapping too if required
        ADD     r0, r3, r9
        ARMop   MMU_ChangingUncachedEntry,,, r4 ; TLB flush
        ADD     r0, r3, r9
        ADD     r1, r0, #4096
        ARMop   Cache_CleanInvalidateRange,,, r4 ; Cache flush
19
Jeffrey Lee's avatar
Jeffrey Lee committed
210 211 212 213 214 215
        MOV     r0, r3
        ARMop   MMU_ChangingUncachedEntry,,, r4 ; TLB flush
        MOV     r0, r3
        ADD     r1, r3, #4096
        ARMop   Cache_CleanInvalidateRange,,, r4 ; Cache flush
        LDR     r1, =L2PT
216

217 218 219 220 221 222 223 224
20      STR     r6, [r1, r3, LSR #10]!          ;update L2PT entry
        TST     r11, #DynAreaFlags_DoublyMapped
        BEQ     %FT21
        STR     r6, [r1, r9, LSR #10]           ;Update 2nd mapping
        MOV     r0, r3
        ARMop   MMU_ChangingUncachedEntry,,, r4 ; TLB flush for 1st mapping
        ADD     r3, r3, r9                      ;restore r3 back to 2nd copy
21
225 226 227
        Pull    "lr"
        MOV     r0, r3
        ARMop   MMU_ChangingUncachedEntry,,tailcall,r4
228

229 230 231 232 233
BangL2PT_unsafe
        STR     r6, [r1, r3, LSR #10]!          ; update level 2 page table (and update pointer so we can use bank-to-bank offset
        TST     r11, #DynAreaFlags_DoublyMapped ; if area doubly mapped
        STRNE   r6, [r1, r9, LSR #10]           ; then store entry for 2nd copy as well
        ADDNE   r3, r3, r9                      ; and point logical address back at 2nd copy
234 235 236
        Pull    "pc"


237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
PPLTransNonShareable                                          ; EL1 EL0
        DCW     (AP_Full * L2_APMult)+L2_SmallPage            ; RWX RWX
        DCW     (AP_Read * L2_APMult)+L2_SmallPage            ; RWX R X
        DCW     (AP_None * L2_APMult)+L2_SmallPage            ; RWX
        DCW     (AP_ROM  * L2_APMult)+L2_SmallPage            ; R X R X
        DCW     (AP_PROM * L2_APMult)+L2_SmallPage            ; R X
        DCW     (AP_Full * L2_APMult)+L2_SmallPage+L2_XN      ; RW  RW
        DCW     (AP_Read * L2_APMult)+L2_SmallPage+L2_XN      ; RW  R
        DCW     (AP_None * L2_APMult)+L2_SmallPage+L2_XN      ; RW
        DCW     (AP_ROM  * L2_APMult)+L2_SmallPage+L2_XN      ; R   R
        DCW     (AP_PROM * L2_APMult)+L2_SmallPage+L2_XN      ; R

PPLTransShareable                                             ; EL1 EL0
        DCW     (AP_Full * L2_APMult)+L2_SmallPage      +L2_S ; RWX RWX
        DCW     (AP_Read * L2_APMult)+L2_SmallPage      +L2_S ; RWX R X
        DCW     (AP_None * L2_APMult)+L2_SmallPage      +L2_S ; RWX
        DCW     (AP_ROM  * L2_APMult)+L2_SmallPage      +L2_S ; R X R X
        DCW     (AP_PROM * L2_APMult)+L2_SmallPage      +L2_S ; R X
        DCW     (AP_Full * L2_APMult)+L2_SmallPage+L2_XN+L2_S ; RW  RW
        DCW     (AP_Read * L2_APMult)+L2_SmallPage+L2_XN+L2_S ; RW  R
        DCW     (AP_None * L2_APMult)+L2_SmallPage+L2_XN+L2_S ; RW
        DCW     (AP_ROM  * L2_APMult)+L2_SmallPage+L2_XN+L2_S ; R   R
        DCW     (AP_PROM * L2_APMult)+L2_SmallPage+L2_XN+L2_S ; R

PPLAccess            ; EL1EL0
                     ; RWXRWX
        GenPPLAccess 2_111111
        GenPPLAccess 2_111101
        GenPPLAccess 2_111000
        GenPPLAccess 2_101101
        GenPPLAccess 2_101000
        GenPPLAccess 2_110110
        GenPPLAccess 2_110100
        GenPPLAccess 2_110000
        GenPPLAccess 2_100100
        GenPPLAccess 2_100000
        DCD     -1
274 275 276 277 278 279 280 281 282

PageShifts
        =       12, 13, 0, 14           ; 1 2 3 4
        =       0,  0,  0, 15           ; 5 6 7 8

        LTORG

; +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
;
Jeffrey Lee's avatar
Jeffrey Lee committed
283
; "VMSAv6"-specific OS_MMUControl code
284 285
;

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
        ; Make current stack page(s) temporarily uncacheable to make cache disable operations safer
        ; In: R0 = OS_Memory 0 flags
ModifyStackCacheability
        Entry   "r1-r2", 24             ; Make up to two pages uncacheable
        ADD     lr, sp, #24+12          ; Get original SP
        STR     lr, [sp, #4]            ; Make current page uncacheable
        ASSERT  (SVCStackAddress :AND: ((1<<20)-1)) = 0 ; Assume MB aligned stack
        TST     lr, #(1<<20)-4096       ; Zero if this is the last stack page
        SUBNE   lr, lr, #4096
        STRNE   lr, [sp, #12+4]         ; Make next page uncacheable
        MOVNE   r2, #2
        MOV     r1, sp
        MOVEQ   r2, #1
        BL      MemoryConvertNoFIQCheck ; Bypass FIQ disable logic within OS_Memory (we've already claimed the FIQ vector)
        EXIT
301

Jeffrey Lee's avatar
Jeffrey Lee committed
302 303 304 305 306 307 308 309
; in:   r0 = 0 (reason code 0, for modify control register)
;       r1 = EOR mask
;       r2 = AND mask
;
;       new control = ((old control AND r2) EOR r1)
;
; out:  r1 = old value
;       r2 = new value
310
MMUControl_ModifyControl ROUT
Jeffrey Lee's avatar
Jeffrey Lee committed
311
        Push    "r0,r3,r4,r5"
312 313 314
        CMP     r1,#0
        CMPEQ   r2,#&FFFFFFFF
        BEQ     MMUC_modcon_readonly
315 316 317 318
        MOV     r3, r1
        MOV     r1, #Service_ClaimFIQ
        SWI     XOS_ServiceCall         ; stop FIQs for safety
        MOV     r1, r3
Jeffrey Lee's avatar
Jeffrey Lee committed
319
        LDR     r3,=ZeroPage
320 321
        MRS     r4, CPSR
        CPSID   if                      ; disable IRQs while we modify soft copy (and possibly switch caches off/on)
322

323 324
        ; We're ARMv6+, just read the real control reg and ignore the soft copy
        ARM_read_control lr
325 326 327
        AND     r2, r2, lr
        EOR     r2, r2, r1
        MOV     r1, lr
328 329 330 331

        ; On some CPUs LDREX/STREX only work on cacheable memory. Allowing the
        ; D-cache to be disabled in this situation is likely to result in near-
        ; instant failure of the OS.
332
        LDR     r5, [r3, #ProcessorFlags]
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
        TST     r5, #CPUFlag_NoDCacheDisable
        ORRNE   r2, r2, #MMUC_C

        ; If we have multiple cache levels, assume it's split caches ontop of a
        ; unified cache. In which case, having mismatched I+D cache settings can
        ; be pretty dangerous due to the IMB ARMops assuming that cleaning to
        ; PoU is sufficient (D-cache on but I-cache off will fail due to the
        ; instruction fetches bypassing the unified cache, D-cache off but
        ; I-cache on will fail because the I-cache will pull code into the
        ; unified cache which an IMB won't clean)
        ; If we have the ability to disable the L2 cache then this would be OK,
        ; but we can't guarantee that ability
        Push    "r1-r4"
        MOV     r1, #1
        ARMop   Cache_Examine,,,r3
        CMP     r0, #0
        Pull    "r1-r4"
        BEQ     %FT04
        LDR     lr, =MMUC_C+MMUC_I
        TST     r2, lr
        ORRNE   r2, r2, lr              ; If one cache is on, force both on

04
356 357 358
        STR     r2, [r3, #MMUControlSoftCopy]
        BIC     lr, r2, r1              ; lr = bits going from 0->1
        TST     lr, #MMUC_C             ; if cache turning on then flush cache before we do it
359 360 361 362 363 364 365 366
        BEQ     %FT05

        ARMop   Cache_InvalidateAll,,,r3 ; D-cache turning on, I-cache invalidate is either necessary (both turning on) or a safe side-effect
        B       %FT10

05
        TST     lr, #MMUC_I
        ARMop   IMB_Full,NE,,r3         ; I-cache turning on, Cache_InvalidateAll could be unsafe
367 368

10
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
        ; If I+D currently enabled, and at least one is turning off, turn off
        ; HAL L2 cache
        TST     r1, #MMUC_C
        TSTNE   r1, #MMUC_I
        BEQ     %FT11
        TST     r2, #MMUC_C
        TSTNE   r2, #MMUC_I
        BNE     %FT11
        LDR     r0, [r3, #Cache_HALDevice]
        TEQ     r0, #0
        BEQ     %FT11
        Push    "r1-r3,r12"
        MOV     lr, pc
        LDR     pc, [r0, #HALDevice_Deactivate]
        Pull    "r1-r3,r12"
11
385 386 387
        BIC     lr, r1, r2              ; lr = bits going from 1->0
        TST     lr, #MMUC_C             ; if cache turning off then clean data cache first
        BEQ     %FT15
388 389 390 391 392
        ; When disabling the data cache we have the problem that modern ARMs generally ignore unexpected cache hits, so any stack usage between us disabling the cache and finishing the clean + invalidate is very unsafe
        ; Solve this problem by making the current pages of the SVC stack temporarily uncacheable for the duration of the dangerous bit
        ; (n.b. making the current stack page uncacheable has the same problems as turning off the cache globally, but OS_Memory 0 has its own workaround for that)
        MOV     r0, #(1<<9)+(2<<14)
        BL      ModifyStackCacheability
393
        ARMop   Cache_CleanAll,,,r3
394 395
15
        ARM_write_control r2
Jeffrey Lee's avatar
Jeffrey Lee committed
396
        myISB   ,lr ; Must be running on >=ARMv6, so perform ISB to ensure CP15 write is complete
397 398
        BIC     lr, r1, r2              ; lr = bits going from 1->0
        TST     lr, #MMUC_C             ; if cache turning off then flush cache afterwards
399 400 401 402 403 404
        BEQ     %FT17
        LDR     r3,=ZeroPage
        ARMop   Cache_InvalidateAll,,,r3 ; D-cache turned off, can safely invalidate I+D
        B       %FT19
17
        TST     lr, #MMUC_I
405
        BEQ     %FT20
Jeffrey Lee's avatar
Jeffrey Lee committed
406
        LDR     r3,=ZeroPage
407 408
        ARMop   IMB_Full,,,r3           ; Only I-cache which turned off, clean D-cache & invalidate I-cache
19
409 410 411 412 413
        ; Undo any stack uncaching we performed above
        BIC     lr, r1, r2
        TST     lr, #MMUC_C
        MOVNE   r0, #(1<<9)+(3<<14)
        BLNE    ModifyStackCacheability
414
20
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
        ; If either I+D was disabled, and now both are turned on, turn on HAL
        ; L2 cache
        TST     r1, #MMUC_C
        TSTNE   r1, #MMUC_I
        BNE     %FT30
        TST     r2, #MMUC_C
        TSTNE   r2, #MMUC_I
        BEQ     %FT30
        LDR     r0, [r3, #Cache_HALDevice]
        TEQ     r0, #0
        BEQ     %FT30
        Push    "r1-r3,r12"
        MOV     lr, pc
        LDR     pc, [r0, #HALDevice_Activate]
        Pull    "r1-r3,r12"
30
431 432 433 434 435 436
        MSR     CPSR_c, r4              ; restore IRQ state
        MOV     r3, r1
        MOV     r1, #Service_ReleaseFIQ
        SWI     XOS_ServiceCall         ; allow FIQs again
        MOV     r1, r3
        CLRV
Jeffrey Lee's avatar
Jeffrey Lee committed
437
        Pull    "r0,r3,r4,r5,pc"
438 439

MMUC_modcon_readonly
Jeffrey Lee's avatar
Jeffrey Lee committed
440
        LDR     r3, =ZeroPage
441 442 443 444
        ; We're ARMv6+, just read the real control reg and ignore the soft copy
        ARM_read_control r1
        STR     r1, [r3, #MMUControlSoftCopy]
        MOV     r2, r1
Jeffrey Lee's avatar
Jeffrey Lee committed
445
        Pull    "r0,r3,r4,r5,pc"
446

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
; PPLTrans should contain L2_AP + L2_XN + L2_S + L2_SmallPage
; PCBTrans should contain L2_C + L2_B + L2_TEX

; In:
; r0 = phys addr (aligned)
; r1 = page flags:
;      APBits
;      NotBufferable
;      NotCacheable
;      CPBits
;      PageFlags_TempUncacheableBits
; r2 -> PPLTrans
; r3 -> PCBTrans
; Out:
; r0 = PTE for 4K page ("small page")
Get4KPTE ROUT
        Entry   "r4"
        AND     lr, r1, #DynAreaFlags_APBits
        MOV     lr, lr, LSL #1
        LDRH    lr, [r2, lr]
        ; Insert AP bits, page type/size, etc.
        ORR     r0, r0, lr
        ; Insert CB+TEX bits
        ASSERT  DynAreaFlags_CPBits = 7*XCB_P :SHL: 10
        ASSERT  DynAreaFlags_NotCacheable = XCB_NC :SHL: 4
        ASSERT  DynAreaFlags_NotBufferable = XCB_NB :SHL: 4
        TST     r1, #PageFlags_TempUncacheableBits
        AND     r4, r1, #DynAreaFlags_NotCacheable + DynAreaFlags_NotBufferable
        AND     lr, r1, #DynAreaFlags_CPBits
        ORRNE   r4, r4, #XCB_TU<<4                      ; if temp uncache, set TU bit
        ORR     r4, r4, lr, LSR #10-4
        LDRB    r4, [r3, r4, LSR #4]                    ; convert to TEX, C and B bits for this CPU
        ORR     r0, r0, r4
        EXIT

; In:
; As per Get4KPTE
; Out:
; r0 = PTE for 64K page ("large page")
Get64KPTE ROUT
        Entry   "r4"
        AND     lr, r1, #DynAreaFlags_APBits
        MOV     lr, lr, LSL #1
        LDRH    lr, [r2, lr]
        ; Remap XN bit, page type
        AND     r4, lr, #L2_XN
        BIC     lr, lr, #3
        ORR     r0, r0, #L2_LargePage
        ASSERT  L2L_XN = L2_XN :SHL: 15
        ORR     r0, r0, r4, LSL #15
        ; Insert AP, S bits
        ORR     r0, r0, lr
50
        ; Insert CB+TEX bits
        ; Shared with Get1MPTE
        ASSERT  DynAreaFlags_CPBits = 7*XCB_P :SHL: 10
        ASSERT  DynAreaFlags_NotCacheable = XCB_NC :SHL: 4
        ASSERT  DynAreaFlags_NotBufferable = XCB_NB :SHL: 4
        TST     r1, #PageFlags_TempUncacheableBits
        AND     r4, r1, #DynAreaFlags_NotCacheable + DynAreaFlags_NotBufferable
        AND     lr, r1, #DynAreaFlags_CPBits
        ORRNE   r4, r4, #XCB_TU<<4                      ; if temp uncache, set TU bit
        ORR     r4, r4, lr, LSR #10-4
        LDRB    r4, [r3, r4, LSR #4]                    ; convert to TEX, C and B bits for this CPU
        ; Move TEX field up
        ORR     r4, r4, r4, LSL #L2L_TEXShift-L2_TEXShift
        BIC     r4, r4, #L2_TEX :OR: ((L2_C+L2_B) :SHL: (L2L_TEXShift-L2_TEXShift))
        ORR     r0, r0, r4
        EXIT

; In:
; As per Get4KPTE
; Out:
; r0 = PTE for 1M page ("section")
Get1MPTE
        ALTENTRY
        AND     lr, r1, #DynAreaFlags_APBits
        MOV     lr, lr, LSL #1
        LDRH    lr, [r2, lr]
        ; Remap XN bit, page type
        AND     r4, lr, #L2_XN
        AND     lr, lr, #L2_AP + L2_S
        ORR     r0, r0, #L1_Section
        ASSERT  L1_XN = L2_XN :SHL: 4
        ORR     r0, r0, r4, LSL #4
        ; Insert AP, S bits
        ASSERT  L1_APShift-L2_APShift=6
        ASSERT  L1_S = L2_S :SHL: 6
        ORR     r0, r0, lr, LSL #6
        ; Insert CB+TEX bits
        ASSERT  L1_C = L2_C
        ASSERT  L1_B = L2_B
        ASSERT  L1_TEXShift = L2L_TEXShift
        B       %BT50

; In:
; r0 = L2PT entry
; Out:
; r0 = phys addr
; r1 = page flags
;      or -1 if fault
; r2 = page size (bytes)
DecodeL2Entry   ROUT
        TST     r0, #3
        MOVEQ   r1, #-1
        MOVEQ   pc, lr
        Entry   "r3-r5"
        ; Find entry in PPL table
        LDR     r3, =ZeroPage
        LDR     r2, =L2_AP+L2_XN ; L2_S ignored, pages should either be all shareable or all not shareable
        LDR     r3, [r3, #MMU_PPLTrans]
        AND     r4, r2, r0
        ; Get XN
        ASSERT  L2_XN = 1
        ASSERT  L2_SmallPage = 2
        ASSERT  L2_LargePage = 1
        TST     r0, #L2_SmallPage ; EQ if LargePage
        TSTEQ   r0, #L2L_XN
        BICEQ   r4, r4, #L2_XN ; Large page with no XN, so clear the fake XN flag we picked up earlier
        MOV     r1, #0
10
        LDRH    r5, [r3, r1]
        AND     r5, r5, r2
        CMP     r5, r4
        ADDNE   r1, r1, #2
        BNE     %BT10
        ; Remap TEX+CB so that they're in the same position as a small page entry
        TST     r0, #L2_SmallPage ; EQ if LargePage
        MOV     r4, #L2_C+L2_B
        ORRNE   r4, r4, #L2_TEX
        AND     r4, r0, r4
        ANDEQ   lr, r0, #L2L_TEX
        ORREQ   r4, r4, lr, LSR #L2L_TEXShift-L2_TEXShift
        ; Align phys addr to page size and set up R2
        MOV     r0, r0, LSR #12
        BICEQ   r0, r0, #15
        MOV     r0, r0, LSL #12
        MOVEQ   r2, #65536
        MOVNE   r2, #4096
20
        ; Search through PCBTrans for a match on TEX+CB (shared with L1 decoding)
        ; Funny order is used so that NCNB is preferred over other variants (since NCNB is common fallback)
        LDR     r3, =ZeroPage
        MOV     r1, r1, LSR #1
        LDR     r3, [r3, #MMU_PCBTrans]
        MOV     lr, #3
30
        LDRB    r5, [r3, lr]
        CMP     r5, r4
        BEQ     %FT40
        TST     lr, #2_11
        SUBNE   lr, lr, #1                      ; loop goes 3,2,1,0,7,6,5,4,...,31,30,29,28
        ADDEQ   lr, lr, #7
        TEQ     lr, #35
        BNE     %BT30                           ; Give up if end of table reached
40
        ; Decode index back into page flags
        ; n.b. temp uncache is ignored (no way we can differentiate between real uncached)
        ASSERT  DynAreaFlags_CPBits = 7*XCB_P :SHL: 10
        ASSERT  DynAreaFlags_NotCacheable = XCB_NC :SHL: 4
        ASSERT  DynAreaFlags_NotBufferable = XCB_NB :SHL: 4
        AND     r4, lr, #XCB_NC+XCB_NB
        AND     lr, lr, #7*XCB_P
        ORR     r1, r1, r4, LSL #4
        ORR     r1, r1, lr, LSL #10
        EXIT

; In:
; r0 = L1PT entry
; Out:
; r0 = phys addr
; r1 = page flags if 1MB page
;      or -1 if fault
;      or -2 if page table ptr
DecodeL1Entry
        ALTENTRY
        AND     r1, r0, #3
        ASSERT  L1_Fault < L1_Page
        ASSERT  L1_Page < L1_Section
        CMP     r1, #L1_Page
        BGT     %FT50
        MOVLT   r1, #-1
        MOVEQ   r1, #-2
        MOVEQ   r0, r0, LSR #10
        MOVEQ   r0, r0, LSL #10
        EXIT
50
        ; Find entry in PPL table
        LDR     r3, =ZeroPage
        LDR     lr, =L2_AP
        LDR     r3, [r3, #MMU_PPLTrans]
        ASSERT  L1_APShift = L2_APShift+6
        AND     r4, lr, r0, LSR #6
        TST     r0, #L1_XN
        ORRNE   r4, r4, #L2_XN
        ORR     lr, lr, #L2_XN
        MOV     r1, #0
60
        LDRH    r5, [r3, r1]
        AND     r5, r5, lr
        CMP     r5, r4
        ADDNE   r1, r1, #2
        BNE     %BT60
        ; Remap TEX+CB so that they're in the same position as a small page entry
        ASSERT  L1_C = L2_C
        ASSERT  L1_B = L2_B
        AND     r4, r0, #L1_C+L1_B
        AND     lr, r0, #L1_TEX
        ORR     r4, r4, lr, LSR #L1_TEXShift-L2_TEXShift
        ; Align phys addr to page size
        MOV     r0, r0, LSR #20
        MOV     r0, r0, LSL #20
        ; Now search through PCBTrans for a match
        B       %BT20

662
        END