MemInfo 85.5 KB
Newer Older
Neil Turton's avatar
Neil Turton committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
; Copyright 1996 Acorn Computers Ltd
;
; Licensed under the Apache License, Version 2.0 (the "License");
; you may not use this file except in compliance with the License.
; You may obtain a copy of the License at
;
;     http://www.apache.org/licenses/LICENSE-2.0
;
; Unless required by applicable law or agreed to in writing, software
; distributed under the License is distributed on an "AS IS" BASIS,
; WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
; See the License for the specific language governing permissions and
; limitations under the License.
;
; > MemInfo

        LTORG

;----------------------------------------------------------------------------------------
; MemorySWI
;
;       In:     r0 = reason code and flags
;                       bits 0-7  = reason code
;                       bits 3-31 = reason specific flags
;       Out:    specific to reason codes
;
;       Perform miscellaneous operations for memory management.
;
MemorySWI       ROUT
        Push    lr                              ; Save real return address.
        AND     lr, r0, #&FF                    ; Get reason code.
        CMP     lr, #(%40-%30):SHR:2            ; If valid reason code then
        ADDCC   lr, lr, #(%30-%10):SHR:2        ;   determine where to jump to in branch table,
        ADDCC   lr, pc, lr, LSL #2
        Push    lr, CC                          ;   save address so we can
10
        ADRCC   lr, MemReturn                   ;   set up default return address for handler routines
        Pull    pc, CC                          ;   and jump into branch table.
20
        ADRL    r0, ErrorBlock_HeapBadReason    ; Otherwise, unknown reason code.
        SETV
        ; Drop through to...

MemReturn
 [ International
        BLVS    TranslateError
 ]
        Pull    lr                              ; Get back real return address.
        BVS     SLVK_SetV
        ExitSWIHandler

30
53
        B       MemoryConvertFIQCheck           ; 0
Neil Turton's avatar
Neil Turton committed
54 55 56 57 58
        B       %BT20                           ; Reason codes 1-5 are reserved.
        B       %BT20
        B       %BT20
        B       %BT20
        B       %BT20
59 60 61 62
        B       MemoryPhysSize                  ; 6
        B       MemoryReadPhys                  ; 7
        B       MemoryAmounts                   ; 8
        B       MemoryIOSpace                   ; 9
63
        B       %BT20                           ; Reason code 10 reserved (for free pool locking)
64
        B       %BT20                           ; Reason code 11 reserved (for PCImapping).
65 66 67 68
        B       RecommendPage                   ; 12
        B       MapIOpermanent                  ; 13
        B       AccessPhysAddr                  ; 14
        B       ReleasePhysAddr                 ; 15
69
        B       MemoryAreaInfo                  ; 16
70 71
        B       MemoryAccessPrivileges          ; 17
        B       FindAccessPrivilege             ; 18
72
        B       DMAPrep                         ; 19
73
        B       ChangeCompatibility             ; 20
74
        B       MapIO64permanent                ; 21
75
        B       AccessPhysAddr64                ; 22
76
        B       ReservePages                    ; 23
77 78
        B       CheckMemoryAccess               ; 24
                                                ; 25+ reserved for ROL
Neil Turton's avatar
Neil Turton committed
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
40


;----------------------------------------------------------------------------------------
; MemoryConvert
;
;       In:     r0 = flags
;                       bit     meaning
;                       0-7     0 (reason code)
;                       8       page number provided when set
;                       9       logical address provided when set
;                       10      physical address provided when set
;                       11      fill in page number when set
;                       12      fill in logical address when set
;                       13      fill in physical address when set
;                       14-15   0,1=don't change cacheability
;                               2=disable caching on these pages
;                               3=enable caching on these pages
;                       16-31   reserved (set to 0)
;               r1 -> page block
;               r2 = number of 3 word entries in page block
;
;       Out:    r1 -> updated page block
;
;       Converts between representations of memory addresses. Can also set the
;       cacheability of the specified pages.
;

; Declare symbols used for decoding flags (given and wanted are used
; so that C can be cleared by rotates of the form a,b). We have to munge
; the flags a bit to make the rotates even.
;
ppn             *       1:SHL:0         ; Bits for address formats.
logical         *       1:SHL:1
physical        *       1:SHL:2
all             *       ppn :OR: logical :OR: physical
given           *       24              ; Rotate for given fields.
wanted          *       20              ; Rotate for wanted fields.
ppn_bits        *       ((ppn :SHL: 4) :OR: ppn)
logical_bits    *       ((logical :SHL: 4) :OR: logical)
physical_bits   *       ((physical :SHL: 4) :OR: physical)
cacheable_bit   *       1:SHL:15
alter_cacheable *       1:SHL:16

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
; Small wrapper to make sure FIQs are disabled if we're making pages uncacheable
; (Modern ARMs ignore unexpected cache hits, so big coherency issues if we make
; a page uncacheable which is being used by FIQ).
MemoryConvertFIQCheck ROUT
        AND     r11, r0, #3:SHL:14
        TEQ     r11, #2:SHL:14
        BNE     MemoryConvertNoFIQCheck
        Entry   "r0-r1"
        MOV     r1, #Service_ClaimFIQ
        SWI     XOS_ServiceCall
        LDMIA   sp, {r0-r1}
        BL      MemoryConvertNoFIQCheck
        FRAMSTR r0
        MRS     r11, CPSR
        MOV     r1, #Service_ReleaseFIQ
        SWI     XOS_ServiceCall
139
        MSR     CPSR_f, r11
140 141 142
        EXIT

MemoryConvertNoFIQCheck   ROUT
143
        Entry   "r0-r11"                ; Need lots of registers!!
Neil Turton's avatar
Neil Turton committed
144

Kevin Bracey's avatar
Kevin Bracey committed
145 146 147 148 149
;        MRS     lr, CPSR
;        Push    "lr"
;        ORR     lr, lr, #I32_bit+F32_bit
;        MSR     CPSR_c, lr

Neil Turton's avatar
Neil Turton committed
150 151 152 153 154 155 156 157 158 159 160 161 162 163
        BIC     lr, r0, #all,given      ; Need to munge r0 to get rotates to work (must be even).
        AND     r0, r0, #all,given
        ORR     r0, r0, lr, LSL #1      ; Move bits 11-30 to 12-31.

        TST     r0, #all,given          ; Check for invalid argument (no fields provided)
        TEQNE   r2, #0                  ;   (no entries in table).
        ADREQL  r0, ErrorBlock_BadParameters
        BEQ     %FT95

        EOR     lr, r0, r0, LSL #given-wanted   ; If flag bits 8-10 and 12-14 contain common bits then
        AND     lr, lr, #all,wanted             ;   clear bits in 12-14 (ie. don't fill in fields already given).
        EOR     lr, lr, #all,wanted
        BIC     r0, r0, lr

Jeffrey Lee's avatar
Jeffrey Lee committed
164
        LDR     r6, =ZeroPage
Neil Turton's avatar
Neil Turton committed
165 166 167 168 169 170
        LDR     r7, [r6, #MaxCamEntry]
        LDR     r6, [r6, #CamEntriesPointer]
10
        SUBS    r2, r2, #1
        BCC     %FT70

171 172
        LDMIA   r1!, {r3-r4,r8}         ; Get next three word entry (PN,LA,PA) and move on pointer.
        MOV     r9, #0                  ; Top half of PA is zero
Neil Turton's avatar
Neil Turton committed
173

174
   [ AMB_LazyMapIn
175 176 177
        BL      handle_AMBHonesty       ; may need to make page honest (as if not lazily mapped)
   ]

Neil Turton's avatar
Neil Turton committed
178 179
        TST     r0, #physical,wanted    ; If PA not wanted
        BEQ     %FT20                   ;   then skip.
180 181 182 183 184 185
        TST     r0, #logical,given      ; If LA given (rotate clears C) then
        ADR     lr, %FT15
        BNE     logical_to_physical     ; Get PA from LA
        BL      ppn_to_logical          ; Else get LA from PN (PA wanted (not given) & LA not given => PN given).
        BLCC    ppn_to_physical         ; And get PA from PN (more accurate than getting PA from LA - page may be mapped out)
15
Neil Turton's avatar
Neil Turton committed
186 187 188
        BCS     %FT80
        TST     r0, #logical,wanted
        STRNE   r4, [r1, #-8]           ; Store back LA if wanted.
189
        STR     r8, [r1, #-4]           ; Store back PA.
Neil Turton's avatar
Neil Turton committed
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
20
        TST     r0, #alter_cacheable    ; If altering cacheability
        EORNE   lr, r0, #ppn,given      ;   and PN not given
        TSTNE   lr, #ppn,given
        TSTEQ   r0, #ppn,wanted         ;   OR PN wanted then don't skip
        BEQ     %FT30                   ; else skip.
        TST     r0, #physical_bits,given        ; If PA not given and PA not wanted (rotate clears C) then
        BLEQ    logical_to_physical             ;   get it from LA (PN wanted/not given & PA not given => LA given).
        BLCC    physical_to_ppn         ; Get PN from PA.
        BCS     %FT80
        TST     r0, #ppn,wanted
        STRNE   r3, [r1, #-12]          ; Store back PN if wanted.
30
        TST     r0, #logical,wanted     ; If LA wanted
        EORNE   lr, r0, #physical,wanted
        TSTNE   lr, #physical,wanted    ;   and PA not wanted then don't skip
        BEQ     %FT40                   ; else skip.
        TST     r0, #alter_cacheable    ; If not changing cacheability (already have PN)
        TSTEQ   r0, #ppn_bits,given     ;   and PN not given and PN not wanted (rotate clears C) then
        BLEQ    physical_to_ppn         ;   get it from PA (LA wanted (not given) & PN not given => PA given).
        BLCC    ppn_to_logical          ; Get LA from PN.
        BCS     %FT80
        STR     r4, [r1, #-8]           ; Store back LA.
40
        TST     r0, #alter_cacheable
        BEQ     %BT10

        CMP     r7, r3                  ; Make sure page number is valid (might not have done any conversion).
        BCC     %FT80

220 221 222
        ADD     r3, r6, r3, LSL #CAM_EntrySizeLog2 ; Point to CAM entry for this page.
        ASSERT  CAM_LogAddr=0
        ASSERT  CAM_PageFlags=4
Neil Turton's avatar
Neil Turton committed
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
        LDMIA   r3, {r4,r5}             ; Get logical address and PPL.

        AND     lr, r5, #PageFlags_TempUncacheableBits
        TST     r0, #cacheable_bit
        BNE     %FT50

        TEQ     lr, #PageFlags_TempUncacheableBits      ; Make uncacheable (increment count).
        BEQ     %BT10                                   ; If count has reached max then go no further (should not happen).
        TEQ     lr, #0                                  ; EQ => we have to change L2.
        ADD     r5, r5, #1:SHL:TempUncacheableShift
        B       %FT60
50
        TEQ     lr, #0                                  ; Make cacheable (decrement count).
        BEQ     %BT10                                   ; If count is already 0 then go no further (page already cacheable).
        SUB     r5, r5, #1:SHL:TempUncacheableShift
        TST     r5, #PageFlags_TempUncacheableBits      ; EQ => we have to change L2.
60
240
        STR     r5, [r3, #CAM_PageFlags] ; Write back new PPL.
Neil Turton's avatar
Neil Turton committed
241 242 243
        BNE     %BT10                   ; Do next entry if we don't have to change L2.

        MOV     r4, r4, LSR #12
244
        LDR     r8, =L2PT
245
        LDR     r3, =ZeroPage
Neil Turton's avatar
Neil Turton committed
246
        ADD     r4, r8, r4, LSL #2      ; Address of L2 entry for logical address.
247 248 249 250 251 252 253 254 255 256 257
 [ MEMM_Type = "VMSAv6"
        ; VMSAv6 is hard, use XCBTable/PCBTrans
        ASSERT  DynAreaFlags_CPBits = 7*XCB_P :SHL: 10
        ASSERT  DynAreaFlags_NotCacheable = XCB_NC :SHL: 4
        ASSERT  DynAreaFlags_NotBufferable = XCB_NB :SHL: 4
        TST     r0, #cacheable_bit      ; n.b. must match EQ/NE used by ARMop calls
        AND     lr, r5, #DynAreaFlags_NotCacheable + DynAreaFlags_NotBufferable
        AND     r5, r5, #DynAreaFlags_CPBits
        ORR     lr, lr, r5, LSR #10-4
        LDR     r5, [r3, #MMU_PCBTrans]
        ORREQ   lr, lr, #XCB_TU<<4      ; if temp uncache, set TU bit
258 259
        MOV     lr, lr, LSR #3
        LDRH    lr, [r5, lr]            ; convert to C, B and TEX bits for this CPU
260
        LDR     r5, [r4]                ; Get L2 entry (safe as we know address is valid).
261
        BIC     r5, r5, #TempUncache_L2PTMask ; Knock out existing attributes (n.b. assumed to not be large page!)
262 263
        ORR     r5, r5, lr              ; Set new attributes
 |
Neil Turton's avatar
Neil Turton committed
264 265 266 267
        LDR     r5, [r4]                ; Get L2 entry (safe as we know address is valid).
        TST     r0, #cacheable_bit
        BICEQ   r5, r5, #L2_C           ; Disable/enable cacheability.
        ORRNE   r5, r5, #L2_C
268
 ]
Jeffrey Lee's avatar
Jeffrey Lee committed
269 270 271 272 273 274 275 276 277 278 279 280
        BNE     %FT63
        ; Making page non-cacheable
        ; There's a potential interrupt hole here - many ARMs ignore cache hits
        ; for pages which are marked as non-cacheable (seen on XScale,
        ; Cortex-A53, Cortex-A15 to name but a few, and documented in many TRMs)
        ; We can't be certain that this page isn't being used by an interrupt
        ; handler, so if we're making it non-cacheable we have to take the safe
        ; route of disabling interrupts around the operation.
        ; Note - currently no consideration is given to FIQ handlers.
        ; Note - we clean the cache as the last step (as opposed to doing it at
        ; the start) to make sure prefetching doesn't pull data back into the
        ; cache.
281 282 283 284 285 286 287 288 289 290 291 292 293
        MRS     r11, CPSR
        ORR     lr, r11, #I32_bit       ; IRQs off
        ; Yuck, we also need to deal with the case where we're making the
        ; current SVC stack page uncacheable (coherency issue when calling the
        ; ARMops if cache hits to uncacheable pages are ignored). Deal with this
        ; by temporarily dropping into IRQ mode (and thus a different stack) if
        ; we think this is going to happen.
        MOV     r10, r4, LSL #10
        SUB     r10, sp, r10
        CMP     r10, #8192              ; Be extra cautious
        EORLO   lr, lr, #SVC32_mode :EOR: IRQ32_mode
        MSR     CPSR_c, lr              ; Switch mode
        Push    "r0, lr"                ; Preserve OS_Memory flags and (potential) IRQ lr
Jeffrey Lee's avatar
Jeffrey Lee committed
294 295 296
        STR     r5, [r4]                ; Write back new L2 entry.
        ASSERT  (L2PT :SHL: 10) = 0     ; Ensure we can convert r4 back to the page log addr
        MOV     r0, r4, LSL #10
297
        ARMop   MMU_ChangingEntry,,,r3  ; Clean TLB+cache
298 299
        Pull    "r5, lr"                ; Restore OS_Memory flags + IRQ lr
        MSR     CPSR_c, r11             ; Back to original mode + IRQ state
Jeffrey Lee's avatar
Jeffrey Lee committed
300 301 302 303 304
        B       %FT65
63
        ; Making page cacheable again
        ; Shouldn't be any cache maintenance worries
        STR     r5, [r4]                ; Write back new L2 entry.
305
        MOV     r5, r0
306
        ASSERT  (L2PT :SHL: 10) = 0     ; Ensure we can convert r4 back to the page log addr
307
        MOV     r0, r4, LSL #10
Jeffrey Lee's avatar
Jeffrey Lee committed
308
        ARMop   MMU_ChangingUncachedEntry,,,r3   ; Clean TLB
309 310 311 312 313
65
        MOV     r0, r5
        B       %BT10

70
314
        CLRV
Neil Turton's avatar
Neil Turton committed
315 316 317 318 319 320 321 322 323 324 325 326 327
        EXIT

80
        TST     r0, #alter_cacheable    ; If we haven't changed any cacheability stuff then
        BEQ     %FT90                   ;   just return error.

        AND     lr, r0, #all,wanted             ; Get wanted flags.
        LDMIA   sp, {r0,r1,r3}                  ; Get back original flags, pointer and count.
        ORR     r0, r0, lr, LSR #given-wanted   ; Wanted fields are now also given as we have done the conversion.
        BIC     r0, r0, #all:SHL:11             ; Clear wanted flags, we only want to change cacheability.
        EOR     r0, r0, #cacheable_bit          ; If we made them uncacheable then make them cacheable again & v.v.
        SUB     r2, r3, r2
        SUBS    r2, r2, #1              ; Change back the entries we have changed up to (but excluding) the error entry.
328
        BLNE    MemoryConvertNoFIQCheck
Neil Turton's avatar
Neil Turton committed
329 330 331
90
        ADRL    r0, ErrorBlock_BadAddress
95
332
        STR     r0, [sp, #Proc_RegOffset+0]
Neil Turton's avatar
Neil Turton committed
333 334 335
        SETV
        EXIT

336
   [ AMB_LazyMapIn
337
;
338
;  entry: r3,r4,r8,r9 = provided PN,LA,PA triple for entry to make honest (at least one given)
339 340 341
;         r0 bits flag which of PN,LA,PA are given
;  exit:  mapping made honest (as if not lazily mapped) if necessary
handle_AMBHonesty  ROUT
342
        Push    "r0, r3-r4, lr"
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
        TST     r0, #logical,given
        BEQ     %FT10
        MOV     r0, r4
        BL      AMB_MakeHonestLA
        B       %FT90
10
        TST     r0, #ppn,given
        BEQ     %FT20
15
        MOV     r0, r3
        BL      AMB_MakeHonestPN
        B       %FT90
20
        TST     r0, #physical,given
        BEQ     %FT90
358
        Push    "r5, r7, r10-r11"
Jeffrey Lee's avatar
Jeffrey Lee committed
359
        LDR     r14, =ZeroPage
360 361
        LDR     r7, [r14, #MaxCamEntry]
        BL      physical_to_ppn
362
        Pull    "r5, r7, r10-r11"
363 364
        BCC     %BT15
90
365
        Pull    "r0, r3-r4, pc"
366

367
   ] ;AMB_LazyMapIn
368

Neil Turton's avatar
Neil Turton committed
369 370 371 372 373

;----------------------------------------------------------------------------------------
; ppn_to_logical
;
;       In:     r3 = page number
374
;               r8,r9 = physical address if given
Neil Turton's avatar
Neil Turton committed
375 376 377
;               r6 = CamEntriesPointer
;               r7 = MaxCamEntry
;
378
;       Out:    r5 corrupted
Neil Turton's avatar
Neil Turton committed
379 380 381 382 383 384 385
;               CC => r4 = logical address
;               CS => invalid page number
;
;       Convert physical page number to logical address.
;
ppn_to_logical
        CMP     r7, r3                  ; Validate page number.
Kevin Bracey's avatar
Kevin Bracey committed
386
        BCC     meminfo_returncs        ; Invalid so return C set.
Neil Turton's avatar
Neil Turton committed
387

388 389
        ASSERT  CAM_LogAddr=0
        LDR     r4, [r6, r3, LSL #CAM_EntrySizeLog2] ; If valid then lookup logical address.
Neil Turton's avatar
Neil Turton committed
390
        TST     r0, #physical,given     ; If physical address was given then
391 392 393 394 395 396 397
      [ NoARMT2
        LDRNE   r5, =&FFF
        ANDNE   r5, r8, r5              ;   mask off page offset
        ORRNE   r4, r4, r5              ;   and combine with logical address.
      |
        BFINE   r4, r8, #0, #12         ;   apply page offset
      ]
Kevin Bracey's avatar
Kevin Bracey committed
398 399
        CLC
        MOV     pc, lr
Neil Turton's avatar
Neil Turton committed
400

401 402
meminfo_returncs_pullr8
        Pull    "r8"
Kevin Bracey's avatar
Kevin Bracey committed
403 404 405
meminfo_returncs
        SEC
        MOV     pc, lr
Neil Turton's avatar
Neil Turton committed
406 407 408 409

;----------------------------------------------------------------------------------------
; physical_to_ppn
;
410
;       In:     r8,r9 = physical address
Neil Turton's avatar
Neil Turton committed
411 412
;               r7 = MaxCamEntry
;
413
;       Out:    r5,r10-r11 corrupted
Neil Turton's avatar
Neil Turton committed
414 415 416 417 418 419
;               CC => r3 = page number
;               CS => invalid physical address, r3 corrupted
;
;       Convert physical address to physical page number.
;
physical_to_ppn ROUT
420 421
        Push    "r8"
        LDR     r5, =ZeroPage+PhysRamTable
Neil Turton's avatar
Neil Turton committed
422
        MOV     r3, #0                  ; Start at page 0.
423
        MOV     r8, r8, LSR #12
Neil Turton's avatar
Neil Turton committed
424 425
10
        CMP     r7, r3                  ; Stop if we run out of pages
426
        BCC     meminfo_returncs_pullr8
Neil Turton's avatar
Neil Turton committed
427

428 429
        LDMIA   r5!, {r10,r11}          ; Get start address and size of next block.
        SUB     r10, r8, r10, LSR #12   ; Determine if given address is in this block.
430
        CMP     r10, r11, LSR #12
Neil Turton's avatar
Neil Turton committed
431 432 433
        ADDCS   r3, r3, r11, LSR #12    ; Move on to next block.
        BCS     %BT10

434
        Pull    "r8"
Jeffrey Lee's avatar
Jeffrey Lee committed
435

436
        ADD     r3, r3, r10
Kevin Bracey's avatar
Kevin Bracey committed
437 438
        CLC
        MOV     pc, lr
Neil Turton's avatar
Neil Turton committed
439

440 441 442 443 444
;----------------------------------------------------------------------------------------
; ppn_to_physical
;
;       In:     r3 = page number
;
445 446 447
;       Out:    r5 corrupted
;               CC => r8,r9 = physical address
;               CS => invalid page number, r8,r9 corrupted
448 449 450 451 452
;
;       Convert physical page number to physical address.
;
ppn_to_physical ROUT
        Push    "r3,lr"
453
        LDR     r5, =ZeroPage+PhysRamTable
454
10
455
        LDMIA   r5!, {r8,lr}            ; Get start address and size of next block.
456 457 458 459 460 461
        MOVS    lr, lr, LSR #12
        BEQ     %FT20
        CMP     r3, lr
        SUBHS   r3, r3, lr
        BHS     %BT10

462 463
        ADD     r8, r8, r3, LSL #12
        MOV     r9, #0
464 465 466 467 468
        Pull    "r3,pc"
20
        SEC
        Pull    "r3,pc"

Neil Turton's avatar
Neil Turton committed
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498

;----------------------------------------------------------------------------------------
; Symbols used in MemoryPhysSize and MemoryReadPhys
;

; Shifts to determine number of bytes/words to allocate in table.
BitShift        *       10
ByteShift       *       BitShift + 3
WordShift       *       ByteShift + 2

; Bit patterns for different types of memory.
NotPresent      *       &00000000
DRAM_Pattern    *       &11111111
VRAM_Pattern    *       &22222222
ROM_Pattern     *       &33333333
IO_Pattern      *       &44444444
NotAvailable    *       &88888888


;----------------------------------------------------------------------------------------
; MemoryPhysSize
;
;       In:     r0 = 6 (reason code with flag bits 8-31 clear)
;
;       Out:    r1 = table size (in bytes)
;               r2 = page size (in bytes)
;
;       Returns information about the memory arrangement table.
;
MemoryPhysSize
499
        Entry   "r0-r1,r3,sb,ip"
500
        AddressHAL
501 502
        MOV     r0, #PhysInfo_GetTableSize
        ADD     r1, sp, #4
503 504
        CallHAL HAL_PhysInfo
        MOV     r2, #4*1024
505
        CLRV
506
        EXIT
Neil Turton's avatar
Neil Turton committed
507 508 509 510 511 512 513 514 515 516 517 518 519 520


;----------------------------------------------------------------------------------------
; MemoryReadPhys
;
;       In:     r0 = 7 (reason code with flag bits 8-31 clear)
;               r1 -> memory arrangement table to be filled in
;
;       Out:    r1 -> filled in memory arrangement table
;
;       Returns the physical memory arrangement table in the given block.
;
MemoryReadPhys  ROUT

521 522
        Entry   "r0-r12"
        AddressHAL
523 524 525
        MOV     r0, #PhysInfo_WriteTable
        SUB     sp, sp, #8
        MOV     r2, sp
526
        CallHAL HAL_PhysInfo            ; fills in everything except DRAM
527
        ADD     sp, sp, #8              ; We don't use this address range any more
528

529 530
        MOV     r5, #0                  ; Current page number.
        LDR     r6, =ZeroPage+PhysRamTable
531 532 533 534
        LDR     r7, [r6, #CamEntriesPointer-PhysRamTable]
        ADD     r7, r7, #CAM_PageFlags  ; Point to PPL entries.
        LDR     r8, [r6, #MaxCamEntry-PhysRamTable]
10
535
        LDMIA   r6!, {r9,r10}           ; Get physical address and size of next block.
536

537 538 539 540
        TST     r10, #OSAddRAM_IsVRAM   ; If not DRAM then
        ADDNE   r5, r5, r10, LSR #12    ;   adjust current page number
        BNE     %BT10                   ;   and try next block.

541
        MOV     r10, r10, LSR #12
542 543 544 545 546 547 548 549 550 551 552
        LDR     r1, [sp, #4]            ; Get table address back
        MOV     r3, r9, LSR #WordShift
        LDR     r3, [r1, r3, LSL #2]!   ; Get first word of block
        MOV     r4, r9, LSR #BitShift
        AND     r4, r4, #(1<<(WordShift-BitShift))-1 ; Bit offset of first page in the word
        RSB     r4, r4, #32             ; number of bits left to process
        MOV     r3, r3, LSL r4

        ; r1 -> current table location
        ; r3 = next word to store in table
        ; r4 = how much we have to shift r3 before storing it
553 554 555 556 557 558 559
20
        SUBS    r4, r4, #4              ; Reduce shift.
        MOVCS   r3, r3, LSR #4          ; If more space in current word then shift it.
        STRCC   r3, [r1], #4            ; Otherwise, store current word
        MOVCC   r3, #0                  ;   and start a new one.
        MOVCC   r4, #28

560
        LDR     lr, [r7, r5, LSL #CAM_EntrySizeLog2] ; Page is there so get PPL and determine if it's available or not.
561
        TST     lr, #PageFlags_Unavailable
562
        TSTEQ   lr, #PageFlags_Reserved
563 564 565 566
        ORREQ   r3, r3, #DRAM_Pattern :SHL: 28
        ORRNE   r3, r3, #(DRAM_Pattern :OR: NotAvailable) :SHL: 28
        ADD     r5, r5, #1              ; Increment page count.
30
567 568 569 570 571 572 573 574 575 576 577 578 579
        SUBS    r10, r10, #1            ; Decrease size of block.
        BNE     %BT20                   ; Stop if no more block left.

        ; Store the partial last word
        LDR     lr, [r1]
        MOV     r3, r3, LSR r4          ; put bits in correct position
        RSB     r4, r4, #32
        MOV     lr, lr, LSR r4          ; drop the low bits of lr
        ORR     r3, r3, lr, LSL r4      ; combine with r3
        STR     r3, [r1]                ; and store word.

        CMP     r8, r5                  ; Stop if we run out of pages.
        BCS     %BT10
580

581 582 583 584 585 586 587
        ; If softloaded, mark that as unavailable DRAM.
        MOV     r0, #8
        SWI     XOS_ReadSysInfo
        BVS     %FT40
        AND     r1, r1, r2
        ANDS    r1, r1, #1:SHL:4        ; Test OS-runs-from-RAM flag
        BEQ     %FT40
Jeffrey Lee's avatar
Jeffrey Lee committed
588
        LDR     r0, =ZeroPage
589 590
        LDR     r0, [r0, #ROMPhysAddr]
        LDR     r1, [sp, #4]
591 592 593 594 595
        ADD     r0, r1, r0, LSR #ByteShift
        LDR     r1, =DRAM_Pattern :OR: NotAvailable
        MOV     r2, #(OSROM_ImageSize*1024) :SHR: ByteShift
        BL      memset
40
596
        CLRV
Neil Turton's avatar
Neil Turton committed
597 598 599 600 601 602 603 604 605
        EXIT


;----------------------------------------------------------------------------------------
; MemoryAmounts
;
;       In:     r0 = flags
;                       bit     meaning
;                       0-7     8 (reason code)
606
;                       8-11    1=return amount of DRAM (excludes any soft ROM)
Neil Turton's avatar
Neil Turton committed
607 608 609
;                               2=return amount of VRAM
;                               3=return amount of ROM
;                               4=return amount of I/O space
610
;                               5=return amount of soft ROM (ROM loaded into hidden DRAM)
Neil Turton's avatar
Neil Turton committed
611 612 613 614 615 616 617 618
;                       12-31   reserved (set to 0)
;
;       Out:    r1 = number of pages of the specified type of memory
;               r2 = page size (in bytes)
;
;       Return the amount of the specified type of memory.
;
MemoryAmounts   ROUT
619
        Entry   "r3"
Neil Turton's avatar
Neil Turton committed
620

621
        BICS    lr, r0, #&FF            ; Get type of memory required (leave bits 12-31, non-zero => error).
622 623 624 625 626 627 628 629 630
        CMP     lr, #6:SHL:8
        ADDCC   pc, pc, lr, LSR #8-2
        NOP
        B       %FT99                   ; Don't understand 0 (so the spec says).
        B       %FT10                   ; DRAM
        B       %FT20                   ; VRAM
        B       %FT30                   ; ROM
        B       %FT40                   ; I/O
        B       %FT50                   ; Soft ROM
Kevin Bracey's avatar
Kevin Bracey committed
631

632 633
10
        LDR     r1, =ZeroPage
634 635
        LDR     r3, [r1, #VideoSizeFlags]
        TST     r3, #OSAddRAM_IsVRAM
636 637 638 639 640 641 642 643
        MOVNE   r3, r3, LSR #12         ; Extract size from flags when genuine VRAM
        MOVNE   r3, r3, LSL #12
        MOVEQ   r3, #0
        LDR     r1, [r1, #RAMLIMIT]
        SUB     r1, r1, r3              ; DRAM = RAMLIMIT - VRAMSize
        B       %FT97
20
        LDR     r1, =ZeroPage
644 645
        LDR     r1, [r1, #VideoSizeFlags]
        TST     r1, #OSAddRAM_IsVRAM
646 647 648 649 650
        MOVNE   r1, r1, LSR #12
        MOVNE   r1, r1, LSL #12         ; VRAM = VRAMSize
        MOVEQ   r1, #0
        B       %FT97
30
651 652 653 654 655 656 657
        Push    "r0, sb, ip"
        AddressHAL
        MOV     r0, #PhysInfo_HardROM
        SUB     sp, sp, #8
        MOV     r2, sp
        CallHAL HAL_PhysInfo
        LDMIA   sp!, {r0-r1}
658 659
        SUBS    r1, r1, r0
        ADDNE   r1, r1, #1              ; ROM = ROMPhysTop + 1 - ROMPhysBot
660
        Pull    "r0, sb, ip"
661 662 663 664 665 666 667 668
        B       %FT97
40
        LDR     r1, =ZeroPage
        LDR     r1, [r1, #IOAllocLimit]
        LDR     r3, =IO
        SUB     r1, r3, r1              ; IO = IO ceiling - IO floor
        B       %FT97
50
669 670
        Push    "r0"
        MOV     r0, #8
671
        SWI     XOS_ReadSysInfo         ; Are we softloaded?
672 673
        Pull    "r0"
        AND     r1, r1, r2
674 675 676 677
        ANDS    r1, r1, #1:SHL:4        ; Test OS-runs-from-RAM flag
        MOVNE   r1, #OSROM_ImageSize*1024
        B       %FT97
97
678 679
        MOV     r1, r1, LSR #12         ; Return as number of pages.
        MOV     r2, #4*1024             ; Return page size.
680
        CLRV
681
        EXIT
682
99
683 684 685 686
        PullEnv
        ; Fall through...
MemoryBadParameters
        ADRL    r0, ErrorBlock_BadParameters ; n.b. MemReturn handles internationalisation
687
        SETV
688
        MOV     pc, lr
Neil Turton's avatar
Neil Turton committed
689 690 691 692 693 694 695 696 697 698 699


;----------------------------------------------------------------------------------------
; MemoryIOSpace
;
;       In:     r0 = 9 (reason code with flag bits 8-31 clear)
;               r1 = controller ID
;                       bit     meaning
;                       0-7     controller sequence number
;                       8-31    controller type:
;                               0 = EASI card access speed control
Kevin Bracey's avatar
Kevin Bracey committed
700
;                               1 = EASI space(s)
Neil Turton's avatar
Neil Turton committed
701 702
;                               2 = VIDC1
;                               3 = VIDC20
Kevin Bracey's avatar
Kevin Bracey committed
703 704
;                               4 = S space (IOMD,podules,NICs,blah blah)
;                               5 = Extension ROM(s)
705 706 707 708 709 710
;                               6 = Tube ULA
;                               7-31 = Reserved (for us)
;                               32 = Primary ROM
;                               33 = IOMD
;                               34 = FDC37C665/SMC37C665/82C710/SuperIO/whatever
;                               35+ = Reserved (for ROL)
Neil Turton's avatar
Neil Turton committed
711 712 713 714 715
;
;       Out:    r1 = controller base address or 0 if not present
;
;       Return the location of the specified controller.
;
Kevin Bracey's avatar
Kevin Bracey committed
716 717 718 719 720

MemoryIOSpace   ROUT
        Entry   "r0,r2,r3,sb,ip"
        AddressHAL
        CallHAL HAL_ControllerAddress
Kevin Bracey's avatar
Kevin Bracey committed
721 722
        CMP     r0, #-1
        MOVNE   r1, r0
723 724 725
        PullEnv
        MOVNE   pc, lr
        B       MemoryBadParameters
Neil Turton's avatar
Neil Turton committed
726

727
;----------------------------------------------------------------------------------------
728
; MemoryFreePoolLock - removed now that free pool is a PMP
729 730 731 732 733 734 735 736 737 738 739

;----------------------------------------------------------------------------------------
;PCImapping - reserved for Acorn use (PCI manager)
;
; See code on Ursula branch


;----------------------------------------------------------------------------------------
;RecommendPage
;
;       In:     r0 bits 0..7  = 12 (reason code 12)
740 741
;               r0 bit 8 = 1 if region must be DMAable
;               r0 bits 9..31 = 0 (reserved flags)
742 743 744 745 746 747 748 749 750
;               r1 = size of physically contiguous RAM region required (bytes)
;               r2 = log2 of required alignment of base of region (eg. 12 = 4k, 20 = 1M)
;
;       Out:    r3 = page number of first page of recommended region that could be
;                    grown as specific pages by dynamic area handler (only guaranteed
;                    if grow is next page claiming operation)
;        - or error if not possible (eg too big, pages unavailable)
;
RecommendPage ROUT
751
        Push    "r0-r2,r4-r11,lr"
752
        CMP     r2,#30
753 754 755
        BHI     RP_failed         ;refuse to look for alignments above 1G
        ANDS    r11,r0,#1:SHL:8   ;convert flag into something usable in the loop
        MOVNE   r11,#OSAddRAM_NoDMA
756 757 758 759 760 761 762 763 764 765 766
;
        ADD     r1,r1,#&1000
        SUB     r1,r1,#1
        MOV     r1,r1,LSR #12
        MOVS    r1,r1,LSL #12     ;size rounded up to whole no. of pages
;
        CMP     r2,#12
        MOVLO   r2,#12            ;log2 alignment must be at least 12 (4k pages)
        MOV     r0,#1
        MOV     r4,r0,LSL r2      ;required alignment-1
;
Jeffrey Lee's avatar
Jeffrey Lee committed
767
        LDR     r0,=ZeroPage+PhysRamTable
768
        MOV     r3,#0            ;page number, starts at 0
Jeffrey Lee's avatar
Jeffrey Lee committed
769
        LDR     r5,=ZeroPage+CamEntriesPointer
770
        LDR     r5,[r5]
771
        ADD     r5,r5,#CAM_PageFlags ; [r5,<page no.>,LSL #3] addresses flags word in CAM
772 773 774 775 776 777 778
        LDMIA   r0!,{r7,r8}      ;address,size of video chunk (skip this one)
;
RP_nextchunk
        ADD     r3,r3,r8,LSR #12 ;page no. of first page of next chunk
        LDMIA   r0!,{r7,r8}      ;address,size of next physical chunk
        CMP     r8,#0
        BEQ     RP_failed
779 780
        TST     r8,r11           ;ignore non-DMA regions if bit 8 of R0 was set
        BNE     RP_nextchunk
781
;
782
        MOV     r8,r8,LSR #12
783
        ADD     r6,r7,r4
784
        MOV     r8,r8,LSL #12
785 786 787 788 789 790 791 792 793 794 795 796
        SUB     r6,r6,#1         ;round up
        MOV     r6,r6,LSR r2
        MOV     r6,r6,LSL r2
        SUB     r6,r6,r7         ;adjustment to first address of acceptable alignment
        CMP     r6,r8
        BHS     RP_nextchunk     ;negligible chunk
        ADD     r7,r3,r6,LSR #12 ;first page number of acceptable alignment
        SUB     r9,r8,r6         ;remaining size of chunk
;
;find first available page
RP_nextpage
        CMP     r9,r1
797
        BLO     RP_nextchunk      ;not enough pages left in chunk
798
        LDR     r6,[r5,r7,LSL #CAM_EntrySizeLog2] ;page flags from CAM
799 800
        ;must not be marked Unavailable or Required
        TST     r6,#PageFlags_Unavailable :OR: PageFlags_Required
801
        TSTEQ   r6,#PageFlags_Reserved
802 803 804 805 806 807 808 809 810 811 812 813
        BEQ     RP_checkotherpages
RP_nextpagecontinue
        CMP     r9,r4
        BLS     RP_nextchunk
        ADD     r7,r7,r4,LSR #12   ;next page of suitable alignment
        SUB     r9,r9,r4
        B       RP_nextpage
;
RP_checkotherpages
        ADD     r10,r7,r1,LSR #12
        SUB     r10,r10,#1         ;last page required
RP_checkotherpagesloop
814
        LDR     r6,[r5,r10,LSL #CAM_EntrySizeLog2] ;page flags from CAM
815
        TST     r6,#PageFlags_Unavailable :OR: PageFlags_Required
816
        TSTEQ   r6,#PageFlags_Reserved
817 818 819 820 821 822 823 824
        BNE     RP_nextpagecontinue
        SUB     r10,r10,#1
        CMP     r10,r7
        BHI     RP_checkotherpagesloop
;
;success!
;
        MOV     r3,r7
825
        Pull    "r0-r2,r4-r11,pc"
826 827 828

RP_failed
        MOV     r3,#0
829
        ADR     r0,ErrorBlock_NoMemChunkAvailable
830 831
        SETV
        STR     r0,[sp]
832
        Pull    "r0-r2,r4-r11,pc"
833

834
        MakeErrorBlock NoMemChunkAvailable
835

836 837 838 839 840
;----------------------------------------------------------------------------------------
;MapIOpermanent - map IO space (if not already mapped) and return logical address
;
;       In:     r0 bits 0..7  = 13 (reason code 13)
;               r0 bit  8     = 1 to map bufferable space (0 is normal, non-bufferable)
841
;               r0 bit  9     = 1 to map cacheable space (0 is normal, non-cacheable)
842
;               r0 bits 10..12 = cache policy
843
;               r0 bits 13..15 = 0 (reserved flags)
Kevin Bracey's avatar
Kevin Bracey committed
844
;               r0 bit  16    = 1 to doubly map
845 846 847 848
;               r0 bit  17    = 1 if access privileges specified
;               r0 bits 18..23 = 0 (reserved flags)
;               r0 bits 24..27 = access privileges (if bit 17 set)
;               r0 bits 28..31 = 0 (reserved flags)
849 850 851 852 853 854 855
;               r1 = physical address of base of IO space required
;               r2 = size of IO space required (bytes)
;
;       Out:    r3 = logical address of base of IO space
;        - or error if not possible (no room)
;
MapIOpermanent ROUT
856
        Entry   "r0-r2,r12"
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
        MOV     r3, r2
        MOV     r2, #0
        B       %FT10

;----------------------------------------------------------------------------------------
;MapIO64permanent - map IO space (if not already mapped) from 64-bit physical space
;and return logical address
;
;       In:     r0 bits 0..7  = 21 (reason code 21)
;               r0 bit  8     = 1 to map bufferable space (0 is normal, non-bufferable)
;               r0 bit  9     = 1 to map cacheable space (0 is normal, non-cacheable)
;               r0 bits 10..12 = cache policy
;               r0 bits 13..15 = 0 (reserved flags)
;               r0 bit  16    = 1 to doubly map
;               r0 bit  17    = 1 if access privileges specified
;               r0 bits 18..23 = 0 (reserved flags)
;               r0 bits 24..27 = access privileges (if bit 17 set)
;               r0 bits 28..31 = 0 (reserved flags)
;               r1,r2 = physical address of base of IO space required
;               r3 = size of IO space required (bytes)
;
;       Out:    r3 = logical address of base of IO space
;        - or error if not possible (no room)
;
MapIO64permanent
        ALTENTRY
10      ; Convert the input flags to some DA flags
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
        TST     r0, #1:SHL:17
        MOVEQ   r12, #2                 ; Default AP: SVC RW, USR none
        MOVNE   r12, r0, LSR #24        ; Else use given AP
        ANDNE   r12, r12, #DynAreaFlags_APBits
        AND     lr, r0, #&300
        EOR     lr, lr, #&300
        ASSERT  DynAreaFlags_NotBufferable = 1:SHL:4
        ASSERT  DynAreaFlags_NotCacheable = 1:SHL:5
        ORR     r12, r12, lr, LSR #4
        AND     lr, r0, #7:SHL:10
        ASSERT  DynAreaFlags_CPBits = 7:SHL:12
        ORR     r12, r12, lr, LSL #2
        ; Calculate the extra flags needed for RISCOS_MapInIO
        AND     r0, r0, #1:SHL:16
        ASSERT  MapInFlag_DoublyMapped = 1:SHL:20
        MOV     r0, r0, LSL #4
        ; Convert DA flags to page table entry
        GetPTE  r0, 1M, r0, r12
 [ MEMM_Type = "VMSAv6"
        ORR     r0, r0, #L1_XN          ; force non-executable to prevent speculative instruction fetches
 ]
        ; Map in the region
        BL      RISCOS_MapInIO_PTE
907
        MOV     r3, r0
908
        PullEnv
909
        CMP     r3, #0              ;MOV,CMP rather than MOVS to be sure to clear V
910 911 912
        ADREQ   r0, ErrorBlock_NoRoomForIO
        SETV    EQ
        MOV     pc, lr
913

914
        MakeErrorBlock NoRoomForIO
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937

;----------------------------------------------------------------------------------------
;AccessPhysAddr - claim temporary access to given physical address (in fact,
;                 controls access to the 1Mb aligned space containing the address)
;                 The access remains until the next AccessPhysAddr or until a
;                 ReleasePhysAddr (although interrupts or subroutines may temporarily
;                 make their own claims, but restore on Release before returning)
;
;       In:     r0 bits 0..7  = 14 (reason code 14)
;               r0 bit  8     = 1 to map bufferable space, 0 for unbufferable
;               r0 bits 9..31 = 0 (reserved flags)
;               r1 = physical address
;
;       Out:    r2 = logical address corresponding to phys address r1
;               r3 = old state (for ReleasePhysAddr)
;
; Use of multiple accesses: it is fine to make several Access calls, and
; clean up with a single Release at the end. In this case, it is the old state
; (r3) of the *first* Access call that should be passed to Release in order to
; restore the state before any of your accesses. (The r3 values of the other
; access calls can be ignored.)
;
AccessPhysAddr ROUT
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
        Push    "r0-r3,r12,lr"
        MOV     r2, #0
        B       %FT10

;----------------------------------------------------------------------------------------
;AccessPhysAddr64 - claim temporary access to given 64-bit physical address (in fact,
;                 controls access to the 1-16Mb aligned space containing the address)
;                 The access remains until the next AccessPhysAddr or until a
;                 ReleasePhysAddr (although interrupts or subroutines may temporarily
;                 make their own claims, but restore on Release before returning)
;
;       In:     r0 bits 0..7  = 22 (reason code 22)
;               r0 bit  8     = 1 to map bufferable space, 0 for unbufferable
;               r0 bits 9..31 = 0 (reserved flags)
;               r1,r2 = physical address
;
;       Out:    r2 = logical address corresponding to phys address r1
;               r3 = old state (for ReleasePhysAddr)
;
; Use of multiple accesses: it is fine to make several Access calls, and
; clean up with a single Release at the end. In this case, it is the old state
; (r3) of the *first* Access call that should be passed to Release in order to
; restore the state before any of your accesses. (The r3 values of the other
; access calls can be ignored.)
;
AccessPhysAddr64
        Push    "r0-r3,r12,lr"
10      TST     r0, #&100           ;test bufferable bit
966 967 968
        MOVNE   r0, #L1_B
        MOVEQ   r0, #0
        SUB     sp, sp, #4          ; word for old state
969
        MOV     r3, sp              ; pointer to word
970
        BL      RISCOS_AccessPhysicalAddress
971 972 973 974 975 976 977 978 979 980
        MOVS    r2, r0              ; null pointer means invalid physical address
        LDMIB   sp, {r0,r1}
        BEQ     %FT90
        LDR     r3, [sp], #5*4      ; load old state, and skip stacked r0-r3
        Pull    "r12,pc"

90      ADRL    r0, ErrorBlock_CantGetPhysMem
        SETV
        ADD     sp, sp, #2*4
        Pull    "r1-r3,r12,pc"
981 982 983 984 985 986 987 988 989 990 991 992 993 994

;----------------------------------------------------------------------------------------
;ReleasePhysAddr - release temporary access that was claimed by AccessPhysAddr
;
;       In:     r0 bits 0..7  = 15 (reason code 15)
;               r0 bits 8..31 = 0 (reserved flags)
;               r1 = old state to restore
;
ReleasePhysAddr
        Push    "r0-r3,r12,lr"
        MOV     r0, r1
        BL      RISCOS_ReleasePhysicalAddress
        Pull    "r0-r3,r12,pc"

995 996
        LTORG

997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
;----------------------------------------------------------------------------------------
;
;        In:    r0 = flags
;                       bit     meaning
;                       0-7     16 (reason code)
;                       8-15    1=cursor/system/sound
;                               2=IRQ stack
;                               3=SVC stack
;                               4=ABT stack
;                               5=UND stack
;                               6=Soft CAM
;                               7=Level 1 page tables
;                               8=Level 2 page tables
;                               9=HAL workspace
;                               10=Kernel buffers
1012
;                               11=HAL uncacheable workspace
1013 1014 1015 1016
;                               12=Kernel 'ZeroPage' workspace
;                               13=Processor vectors
;                               14=DebuggerSpace
;                               15=Scratch space
1017
;                               16=Compatibility page
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
;                       16-31   reserved (set to 0)
;
;       Out:    r1 = base of area
;               r2 = address space allocated for area (whole number of pages)
;               r3 = actual memory used by area (whole number of pages)
;               all values 0 if not present, or incorporated into another area
;
;       Return size of various low-level memory regions
MemoryAreaInfo ROUT
        Entry   "r0"
        MOV     r1, #0
        MOV     r2, #0
        MOV     r3, #0
        MOV     lr, r0, LSR #8
        AND     lr, lr, #&FF
        CMP     lr, #(MAI_TableEnd - MAI_TableStart)/4
        ADDLO   pc, pc, lr, LSL #2
        B       %FT70
MAI_TableStart
        B       %FT70
        B       MAI_CursSysSound
        B       MAI_IRQStk
        B       MAI_SVCStk
        B       MAI_ABTStk
        B       MAI_UNDStk
        B       MAI_SoftCAM
        B       MAI_L1PT
        B       MAI_L2PT
        B       MAI_HALWs
        B       MAI_Kbuffs
1048
        B       MAI_HALWsNCNB
1049 1050 1051 1052
        B       MAI_ZeroPage
        B       MAI_ProcVecs
        B       MAI_DebuggerSpace
        B       MAI_ScratchSpace
1053
        B       MAI_CompatibilityPage
1054 1055 1056
MAI_TableEnd

70
1057 1058
        PullEnv
        B       MemoryBadParameters
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092

MAI_CursSysSound
        LDR     r1, =CursorChunkAddress
        MOV     r2, #32*1024
        MOV     r3, r2
        EXIT

MAI_IRQStk
 [ IRQSTK < CursorChunkAddress :LOR: IRQSTK > CursorChunkAddress+32*1024
        LDR     r1, =IRQStackAddress
        MOV     r2, #IRQSTK-IRQStackAddress
        MOV     r3, r2
 ]
        EXIT

MAI_SVCStk
        LDR     r1, =SVCStackAddress
        MOV     r2, #SVCSTK-SVCStackAddress
        MOV     r3, r2
        EXIT

MAI_ABTStk
        LDR     r1, =ABTStackAddress
        MOV     r2, #ABTSTK-ABTStackAddress
        MOV     r3, r2
        EXIT

MAI_UNDStk
        LDR     r1, =UNDSTK :AND: &FFF00000
        LDR     r2, =UNDSTK :AND: &000FFFFF
        MOV     r3, r2
        EXIT

MAI_SoftCAM
Jeffrey Lee's avatar
Jeffrey Lee committed
1093
        LDR     r0, =ZeroPage
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
        LDR     r1, [r0, #CamEntriesPointer]
        LDR     r2, =CAMspace
        LDR     r3, [r0, #SoftCamMapSize]
        EXIT

MAI_L1PT
        LDR     r1, =L1PT
        MOV     r2, #16*1024
        MOV     r3, r2
        EXIT

MAI_L2PT
Jeffrey Lee's avatar
Jeffrey Lee committed
1106
        LDR     r0, =ZeroPage
1107 1108 1109 1110 1111 1112
        LDR     r1, =L2PT
        MOV     r2, #4*1024*1024
        LDR     r3, [r0, #L2PTUsed]
        EXIT

MAI_HALWs
Jeffrey Lee's avatar
Jeffrey Lee committed
1113
        LDR     r0, =ZeroPage
1114
        LDR     r1, =HALWorkspace
1115
        MOV     r2, #HALWorkspaceSize
1116 1117 1118
        LDR     r3, [r0, #HAL_WsSize]
        EXIT

1119
MAI_HALWsNCNB
Jeffrey Lee's avatar
Jeffrey Lee committed
1120
        LDR     r0, =ZeroPage
1121 1122 1123 1124 1125 1126 1127 1128
        LDR     r1, =HALWorkspaceNCNB
        MOV     r2, #32*1024
        LDR     r3, [r0, #HAL_Descriptor]
        LDR     r3, [r3, #HALDesc_Flags]
        ANDS    r3, r3, #HALFlag_NCNBWorkspace
        MOVNE   r3, r2
        EXIT

1129 1130 1131 1132 1133
MAI_Kbuffs
        LDR     r1, =KbuffsBaseAddress
        MOV     r2, #KbuffsMaxSize
        LDR     r3, =(KbuffsSize + &FFF) :AND: :NOT: &FFF
        EXIT
1134

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
MAI_ZeroPage
        LDR     r1, =ZeroPage
        MOV     r2, #16*1024
        MOV     r3, #16*1024
        EXIT

MAI_ProcVecs
      [ ZeroPage != ProcVecs
        LDR     r1, =ProcVecs
        MOV     r2, #4096
        MOV     r3, #4096
      ]
        EXIT

MAI_DebuggerSpace
        ; Only report if DebuggerSpace is a standalone page. The debugger module
        ; finds DebuggerSpace via OS_ReadSysInfo 6, this call is only for the
        ; benefit of the task manager.
      [ DebuggerSpace_Size >= &1000
        LDR     r1, =DebuggerSpace
        MOV     r2, #DebuggerSpace_Size
        MOV     r3, #DebuggerSpace_Size
      ]
        EXIT

MAI_ScratchSpace
        LDR     r1, =ScratchSpace
        MOV     r2, #16*1024
        MOV     r3, #16*1024
        EXIT

1166 1167 1168 1169
MAI_CompatibilityPage
      [ CompatibilityPage
        MOV     r1, #0
        MOV     r2, #4096
1170 1171
        LDR     r0, =ZeroPage
        LDRB    r3, [r0,#CompatibilityPageEnabled]
1172 1173 1174 1175 1176
        CMP     r3, #0
        MOVNE   r3, #4096
      ]
        EXIT

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
;----------------------------------------------------------------------------------------
;
;        In:    r0 = flags
;                       bit     meaning
;                       0-7     17 (reason code)
;                       8-31    reserved (set to 0)
;               r1 = AP number to start search from (0 to start enumeration)
;                    increment by 1 on each call to enumerate all values
;
;       Out:    r1 = AP number (-1 if end of list reached)
;               r2 = Permissions:
;               bit 0: executable in user mode
;               bit 1: writable in user mode
;               bit 2: readable in user mode
;               bit 3: executable in privileged modes
;               bit 4: writable in privileged modes
;               bit 5: readable in privileged modes
;               bits 6+: reserved
;
;       Returns permission information for a given AP / enumerates all AP
MemoryAccessPrivileges ROUT
        CMP     r0, #17
        BNE     MemoryBadParameters
        Entry   "r3-r4"
        LDR     r3, =ZeroPage
        MOV     lr, r1
        LDR     r3, [r3, #MMU_PPLAccess]
        ; Currently we don't have any gaps in the table, so we can just index the r1'th element (being careful to not go past the table end)
10
        LDR     r4, [r3], #4
        CMP     r4, #-1
        BEQ     %FT98
        SUBS    lr, lr, #1
        BGE     %BT10
        BL      PPL_CMA_to_RWX
        EXIT
98
        MOV     r1, #-1
        MOV     r2, #0
        EXIT

; In: r4 = CMA-style AP/PPL access flags (from MMU_PPLAccess)
; Out: r2 = RWX-style AP/PPL access flags (for OS_Memory 17/18)
PPL_CMA_to_RWX ROUT
        Entry
        AND     r2, r4, #CMA_Partially_UserR
        ASSERT  CMA_Partially_UserR = 1<<4
        ASSERT  MemPermission_UserR = 1<<2
        MOV     r2, r2, LSR #4-2
        AND     lr, r4, #CMA_Partially_UserW
        ASSERT  CMA_Partially_UserW = 1<<5
        ASSERT  MemPermission_UserW = 1<<1
        ORR     r2, r2, lr, LSR #5-1
        AND     lr, r4, #CMA_Partially_UserXN ; (internally, XN flags are stored inverted)
        ASSERT  CMA_Partially_UserXN = 1<<14
        ASSERT  MemPermission_UserX = 1<<0
        ORR     r2, r2, lr, LSR #14-0
        AND     lr, r4, #CMA_Partially_PrivR
        ASSERT  CMA_Partially_PrivR = 1<<6
        ASSERT  MemPermission_PrivR = 1<<5
        ORR     r2, r2, lr, LSR #6-5
        AND     lr, r4, #CMA_Partially_PrivW
        ASSERT  CMA_Partially_PrivW = 1<<7
        ASSERT  MemPermission_PrivW = 1<<4
        ORR     r2, r2, lr, LSR #7-4
        AND     lr, r4, #CMA_Partially_PrivXN
        ASSERT  CMA_Partially_PrivXN = 1<<15
        ASSERT  MemPermission_PrivX = 1<<3
        ORR     r2, r2, lr, LSR #15-3
        EXIT

;----------------------------------------------------------------------------------------
;
;        In:    r0 = flags
;                       bit     meaning
;                       0-7     18 (reason code)
;                       8-31    reserved (set to 0)
;               r1 = Permission flag values (as per OS_Memory 17)
;               r2 = Permission flag mask
;
;       Out:    r0 = AP number that gives closest permissions
;               r2 = Permission flags of that AP (== r1 if exact match)
;               Error if no suitable AP found
;
;       Searches for an AP where ((permissions AND r2) == r1), and which
;       grants the least extra permissions
;
;       Extra permissions are weighted as follows (least acceptable first):
;       * User write
;       * User execute
;       * User read
;       * Privileged write
;       * Privileged execute
;       * Privileged read
FindAccessPrivilege ROUT
        CMP     r0, #18 ; No extra flags in r0
        BICEQS  r0, r1, r2 ; r1 must be a subset of r2
        BICEQS  r0, r2, #63 ; Only 6 known permission flags
        BNE     MemoryBadParameters
        ; n.b. r0 is now 0
        Entry   "r3-r11"
        LDR     r3, =ZeroPage
        MOV     r5, r1
        LDR     r3, [r3, #MMU_PPLAccess]
        MOV     r6, r2
        MOV     r7, #-1 ; Best AP
        MOV     r8, #0 ; Best flags
        MOV     r9, #-1 ; Best difference
        ; Magic constants for weighting the difference
        LDR     r10, =(1<<1)+(1<<6)+(1<<12)+(1<<18)+(1<<24)+(1<<30)
        LDR     r11, =(MemPermission_PrivR<<1)+(MemPermission_PrivX<<6)+(MemPermission_PrivW<<12)+(MemPermission_UserR<<18)+(MemPermission_UserX<<24)+(MemPermission_UserW<<30)
10
        LDR     r4, [r3], #4
        CMP     r4, #-1
        BEQ     %FT50
        BL      PPL_CMA_to_RWX ; -> r2 = flags
        ; Check it satisfies the mask
        AND     lr, r2, r6
        CMP     lr, r5
        BNE     %FT40
        ; Calculate diff
        BIC     lr, r2, r6
        MUL     lr, r10, lr ; Replicate the six bits six times
        AND     lr, r11, lr ; Select just the bits that we care about
        CMP     lr, r9
        BEQ     %FT80       ; Exact match found
        MOVLO   r7, r0      ; Remember new result if better
        MOVLO   r8, r2
        MOVLO   r9, lr
40
        ADD     r0, r0, #1
        B       %BT10
50
        MOVS    r0, r7
        BMI     %FT90
        MOV     r2, r8
80
        CLRV
        EXIT

90
        MOV     r2, r6 ; Restore original r2
        ADR     r0, ErrorBlock_AccessPrivilegeNotFound
        SETV
        EXIT

        MakeErrorBlock AccessPrivilegeNotFound

1325 1326 1327 1328
;----------------------------------------------------------------------------------------
;
;        In:    r0 = flags
;                       bit     meaning
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
;                       0-7     19 (reason code)
;                       8       Input function provides physical addresses
;                       9       DMA is writing to RAM
;                       10      DMA is complete, perform any post-op cache maintenance
;                       11-31   reserved (set to 0)
;               r1 = R12 value to provide to called functions
;               r2 = Initial R9 value to provide to input function
;               r3 -> Input function:
;                      in:  r9 = r2 from SWI / value from previous call
;                           r12 = r1 from SWI
;                      out: r0 = start address of region
;                           r1 = length of region (0 if end of transfer)
;                           r2 = flags:
;                                bit 0: Bounce buffer will be used
;                           r9 = new r9 for next input call
;                           r12 corrupt
;               r4 = Initial R9 value to provide to output function
;               r5 -> Output function (if bit 10 of R0 clear):
;                      in: r0 = logical address of start of region
;                          r1 = physical address of start of region
;                          r2 = length of region
;                          r3 = flags:
;                               bit 0: Bounce buffer must be used
;                          r9 = r4 from SWI / value from previous call
;                          r12 = r1 from SWI
;                      out: r9 = new r9 value for next output call
;                           r0-r3, r12 corrupt
;
;       Out:    r2, r4 updated to match values returned by input/output calls
;               All other regs preserved
;
; Performs address translation and cache maintenance necessary to allow for DMA
; to be performed to/from cacheable memory.
;
; To allow Service_PagesUnsafe to be dealt with in a straightforward manner, we
; have to be careful not to cache the results of any address translations over
; calls to the input/output functions. E.g. if the output function tries to
; allocate from PCI RAM, that may trigger claiming of a specific page by the
; PCI DA, potentially invalidating any existing logical -> physical translation.
; This restriction hampers the routines ability to merge together input and
; output blocks, and to perform minimal cache maintenance. However for typical
; scatter lists of low to medium complexity it should still produce acceptable
; output.
;
; Note that if the input function provides physical addresses, the caller must
; take care to abort the entire operation if one of the physical pages involved
; in the request becomes claimed by someone else while the OS_Memory call is in
; progress. This is because we have no sensible way of dealing with this case
; ourselves (even if we didn't attempt to call the input function multiple times
; and merge together the blocks, we'd still have to buffer things internally to
; deal with when blocks need splitting for cache alignment)
;
; Internally, blocks are stored in the following format:
;
; Word 0 = Start logical address (incl.)
; Word 1 = Logical -> physical address offset (low bits) + flags (high bits)
; Word 2 = End logical address (excl.)
;
; This minimises the number of registers needed to hold a block, and simplifies
; the merge calculation (blocks can be merged if words 2 + 1 of first block
; match words 0 + 1 of second block)

; Workspace struct that's stored on the stack
                    ^ 0
DMAPrepW_InHold     # 12
DMAPrepW_InChunk    # 12
DMAPrepW_PhyChunk   # 12
DMAPrepW_CacheMask  # 4 ; Cache line length - 1
DMAPrepW_ARMop      # 4 ; Cache maintenenace ARMop to use
DMAPrepW_CamEntriesPointer # 4 ; CamEntriesPointer copy
DMAPrepW_Size       # 0
                        ; These next few correspond directly to the input registers in the stack frame
DMAPrepW_Flags      # 4
DMAPrepW_R12        # 4
DMAPrepW_InR9       # 4
DMAPrepW_InFunc     # 4
DMAPrepW_OutR9      # 4
DMAPrepW_OutFunc    # 4

DMAPrep_FlagOffset * 20
DMAPrep_NonCacheable * 1:SHL:21 ; Internal flag used for tracking non-cacheable pages

DMAPrep ROUT
        CMP     r0, #1<<11
        BHS     MemoryBadParameters
        ; The end of a read from RAM is a no-op (no cache maintenance required)
        AND     r11, r0, #DMAPrep_Write :OR: DMAPrep_End
        TEQ     r11, #DMAPrep_End
        MOVEQ   pc, lr
        Entry   "r0-r9", DMAPrepW_Size
        ; Determine the cache maintenance function we need to use
        CMP     r11, #DMAPrep_Write
        LDR     r10, =ZeroPage
        ASSERT  DMAPrep_End > DMAPrep_Write
        LDRLE   r11, [r10, #Proc_Cache_CleanRange] ; Start of DMA (read or write)
        LDRGT   r11, [r10, #Proc_Cache_InvalidateRange] ; End of DMA write
        STR     r11, [sp, #DMAPrepW_ARMop]
        ; Get the params needed for address translation
        LDR     r6, [r10, #CamEntriesPointer]
        LDR     r7, [r10, #MaxCamEntry]
        ; Init workspace
        STR     r6, [sp, #DMAPrepW_CamEntriesPointer]
        ; Get the cache line mask value
      [ MEMM_Type == "ARM600"
        LDRB    r1, [r10, #DCache_LineLen]
      |
        ; Yuck, need to probe for the last cache level
        MOV     r5, #Cache_Lx_MaxLevel-1
01
        MOV     r1, r5
        ARMop   Cache_Examine,,,r10
        CMP     r1, #0
        SUBEQ   r5, r5, #1
        BEQ     %BT01
        CMP     r3, r1
        MOVHI   r1, r3
      ]
        SUB     r1, r1, #1
        STR     r1, [sp, #DMAPrepW_CacheMask]
        ; Get initial input region
        BL      DMAPrep_CallInputFunc
        CMP     r0, r3
        BEQ     %FT90
05
        STMIA   lr, {r0, r2, r3}
10
        ; Get another input region, see if we can merge it with InChunk
        BL      DMAPrep_CallInputFunc
        CMP     r0, r3
        BEQ     %FT19
        LDMIB   lr, {r4, r5}
        CMP     r4, r2
        CMPEQ   r5, r0
        STREQ   r3, [lr, #8]
        BEQ     %BT10
19
        ; Can't merge this region, store it in InHold
        ASSERT  DMAPrepW_InHold = DMAPrepW_InChunk-12
        STMDB   lr, {r0, r2, r3}
20
        ; Perform address translation for the start of InChunk
        LDR     r4, [sp, #DMAPrepW_InChunk]
        BL      DMAPrep_Translate
        ; Store in PhyChunk
        ADD     lr, sp, #DMAPrepW_PhyChunk
        STMIA   lr, {r4-r6}
        ; Align start to cache boundary
        TST     r5, #DMAPrep_NonCacheable+(DMAPrep_UseBounceBuffer :SHL: DMAPrep_FlagOffset)
        BNE     %FT25
        LDR     lr, [sp, #DMAPrepW_Flags]
        LDR     r10, [sp, #DMAPrepW_CacheMask]
        TST     lr, #DMAPrep_Write
        TSTNE   r4, r10
        BEQ     %FT25
        ; Unaligned write to cacheable memory -> bounce required
        ADD     r1, r4, r10
        BIC     r1, r1, r10 ; End of current cache line
        ; Only round down to end of current cache line if the end of the chunk
        ; is at or beyond the end of the next cache line
        ADD     r2, r1, r10 ; Last byte we can accept without needing to truncate
        CMP     r6, r2
        MOVHI   r6, r1 ; Truncate!
        ORR     r5, r5, #DMAPrep_UseBounceBuffer :SHL: DMAPrep_FlagOffset
        B       %FT40
25
        ; Start doesn't need splitting, so translate + append more pages
        ADD     lr, sp, #DMAPrepW_InChunk
        ASSERT  DMAPrepW_PhyChunk = DMAPrepW_InChunk + 12
        LDMIA   lr, {r0-r2, r4-r6}
        SUB     r3, r6, r4 ; Length of translated region
        SUB     r2, r2, r0 ; Length of input region
        CMP     r3, r2
        BEQ     %FT30
        ADD     r4, r0, r3 ; Translate next address in input address space
        BL      DMAPrep_Translate
        ; Try and merge with PhyChunk
        ADD     lr, sp, #DMAPrepW_PhyChunk
        LDMIB   lr, {r0, r1}
        CMP     r0, r5
        CMPEQ   r1, r4
        STREQ   r6, [sp, #DMAPrepW_PhyChunk + 8]
        BEQ     %BT25
        LDMIA   lr, {r4-r6}
30
        ; Can't merge any more pages into this chunk {r4-r6}
        ; Truncate / bounce the end if necessary
        TST     r5, #DMAPrep_NonCacheable+(DMAPrep_UseBounceBuffer :SHL: DMAPrep_FlagOffset)
        BNE     %FT50
        LDR     lr, [sp, #DMAPrepW_Flags]
        LDR     r10, [sp, #DMAPrepW_CacheMask]
        TST     lr, #DMAPrep_Write
        TSTNE   r6, r10
        BEQ     %FT40
        ; Unaligned write to cacheable memory -> bounce required
        BIC     r3, r6, r10
        CMP     r3, r4
        ORREQ   r5, r5, #DMAPrep_UseBounceBuffer :SHL: DMAPrep_FlagOffset ; Bounce
        MOVNE   r6, r3 ; Truncate
40
        ; Perform cache maintenance if necessary
        ; For safety we always perform this before calling the output function, rather than caching and attempting to merge the regions (output function may alter cacheability of pages?)
        TST     r5, #DMAPrep_NonCacheable+(DMAPrep_UseBounceBuffer :SHL: DMAPrep_FlagOffset)
        BNE     %FT50
        ADD     r1, r6, r10
        BIC     r0, r4, r10
        BIC     r1, r1, r10
        MOV     lr, pc
        LDR     pc, [sp, #DMAPrepW_ARMop]
50
        ; Call the output function
        LDR     lr, [sp, #DMAPrepW_Flags]
        TST     lr, #DMAPrep_End
        BNE     %FT60 ; No output func for end-of-op
        MOV     r0, r4
        ADD     r1, r4, r5, LSL #12
        SUB     r2, r6, r4
        MOV     r3, r5, LSR #DMAPrep_FlagOffset
        LDR     r12, [sp, #DMAPrepW_R12]
        AND     r3, r3, #DMAPrep_UseBounceBuffer ; Mask out internal flags
        ADD     r9, sp, #DMAPrepW_OutR9
        CLRV    ; Ensure V is clear on entry so simple functions don't confuse us
        MOV     lr, pc
        ASSERT  DMAPrepW_OutFunc = DMAPrepW_OutR9 + 4
        LDMIA   r9, {r9, pc}            ; Call output function
        STR     r9, [sp, #DMAPrepW_OutR9] ; Always write back updated R9
        BVS     %FT90
60
        ; Advance InChunk by the length of {r4-r6}
        LDR     r0, [sp, #DMAPrepW_InChunk]
        ADD     r0, r0, r6
        LDR     r1, [sp, #DMAPrepW_InChunk+8]
        SUB     r0, r0, r4
        STR     r0, [sp, #DMAPrepW_InChunk]
        CMP     r0, r1
        BNE     %BT20
        ; InChunk depleted, copy InHold to InChunk and try for more input
        ADD     lr, sp, #DMAPrepW_InChunk
        ASSERT  DMAPrepW_InHold = 0
        LDMIA   sp, {r0,r2,r3}
        CMP     r0, r3
        BNE     %BT05
        ; InHold was empty, so no more regions to process
90
        FRAMSTR r0, VS
        EXIT

95
        ADRL    r0, ErrorBlock_BadAddress
        SETV
        B       %BT90

96
        PullEnv
        B       MemoryBadParameters

; Out: R0, R2, R3 = block
;      LR -> InChunk
;      R1, R4, R9, R12 corrupt
DMAPrep_CallInputFunc
        MOV     r4, lr ; Avoid pushing onto stack, to simplify workspace indexing and error handling
        LDR     r12, [sp, #DMAPrepW_R12]
        ADD     r9, sp, #DMAPrepW_InR9
        CLRV    ; Ensure V is clear on entry so simple functions don't confuse us
        MOV     lr, pc
        ASSERT  DMAPrepW_InFunc = DMAPrepW_InR9 + 4
        LDMIA   r9, {r9, pc}            ; Call the input function
        STR     r9, [sp, #DMAPrepW_InR9] ; Always write back updated R9
        BVS     %BT90
        CMP     r2, #DMAPrep_UseBounceBuffer
        BHI     %BT96
        ; Pack into InChunk
        MOV     r2, r2, LSL #DMAPrep_FlagOffset
        ADD     lr, sp, #DMAPrepW_InChunk
        ADD     r3, r0, r1
        MOV     pc, r4

; Translate the start of InChunk into a block
; In: r4 = Address to translate
;     r7 = MaxCamEntry
; Out: r4, r5, r6 = block
1609
;      r1, r3, r8-r12 corrupt
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
DMAPrep_Translate
        MOV     r1, lr
        LDR     r12, [sp, #DMAPrepW_InChunk+8]
        SUB     r12, r12, r4            ; Length of input region
        LDR     lr, [sp, #DMAPrepW_Flags]
        LDR     r6, [sp, #DMAPrepW_CamEntriesPointer]
        TST     lr, #DMAPrep_PhysProvided
        BNE     %FT20
      [ AMB_LazyMapIn
        MOV     r9, r0
        MOV     r0, r4
        BL      AMB_MakeHonestLA
        MOV     r0, r9
      ]
1624 1625
        BL      logical_to_physical     ; r4 -> r8, r9
        BLCC    physical_to_ppn         ; r7, r8, r9 -> r3
1626
        BCS     %BT95
1627
        ; r5,r10-r11 corrupt
1628 1629 1630 1631 1632
        ; Grab page flags
        ADD     lr, r6, r3, LSL #CAM_EntrySizeLog2
        LDR     lr, [lr, #CAM_PageFlags]
        B       %FT30
20
1633 1634 1635
        MOV     r8, r4
        MOV     r9, #0
        BL      physical_to_ppn         ; r7, r8, r9 -> r3
1636
        BCS     %BT95
1637
        ; r5, r10-r11 corrupt
1638 1639 1640
        ; Manual ppn -> logical so we can get the page flags at the same time
        ; TODO this won't deal with mapped out pages in a sensible manner (will output them all individually)
      [ AMB_LazyMapIn
1641
        MOV     r10, r0
1642 1643
        MOV     r0, r3
        BL      AMB_MakeHonestPN
1644
        MOV     r0, r10
1645 1646 1647 1648 1649 1650
      ]
        ADD     lr, r6, r3, LSL #CAM_EntrySizeLog2
        ASSERT  CAM_LogAddr=0
        ASSERT  CAM_PageFlags=4
        LDMIA   lr, {r3, lr}
        ; Merge in the offset within the page
1651
      [ NoARMT2
1652 1653 1654
        MOV     r3, r3, LSR #12
        ORR     r4, r3, r4, LSL #20
        MOV     r4, r4, ROR #20
1655 1656 1657 1658
      |
        BFI     r3, r4, #0, #12
        MOV     r4, r3
      ]
1659 1660 1661
30
        LDR     r3, [sp, #DMAPrepW_InChunk+4]
        ; Combine the cacheability + phys offset into r5
1662
        SUB     r5, r8, r4              ; r5 = phys-log
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
        TST     lr, #DynAreaFlags_NotCacheable
        ORR     r5, r3, r5, LSR #12
        ORRNE   r5, r5, #DMAPrep_NonCacheable
        ; Work out how much of r12 fits into this page
        ; This is done by comparing against the length of the input region,
        ; since the input could be logical or physical
        ADD     r6, r4, #4096
        MOV     r6, r6, LSR #12
        RSB     r6, r4, r6, LSL #12
        CMP     r6, r12
        MOVHI   r6, r12
        ADD     r6, r4, r6
        MOV     pc, r1

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
;----------------------------------------------------------------------------------------
;
;       In:     r0 = flags
;                       bit     meaning
;                       0-7     20 (reason code)
;                       8-31    reserved (set to 0)
;               r1 = 0 to disable compatibility page
;                    1 to enable compatibility page
;                    -1 to read state
;
;       Out:    r1 = new/current state:
;                    0 if disabled
;                    1 if enabled
;                    -1 if not supported
;
;       Controls the page zero compatibility page located at &0
;
;       If the compatibility page isn't supported, attempts to enable it will
;       silently fail, with a result of r1 = -1
;
ChangeCompatibility ROUT
        CMP     r1, #-1
        CMPNE   r1, #1
        CMPLS   r0, #255
        BHI     MemoryBadParameters
 [ :LNOT: CompatibilityPage
        MOV     r1, #-1
        MOV     pc, lr
 |
        Entry   "r0-r11", DANode_NodeSize
1707 1708 1709
        LDR     r12, =ZeroPage
        LDRB    r0, [r12, #CompatibilityPageEnabled]
        FRAMSTR r0,,r1 ; return pre-change state in r1 (will be updated later, as necessary)
1710 1711 1712
        CMP     r1, #-1
        CMPNE   r0, r1
        EXIT    EQ
1713 1714 1715 1716 1717 1718 1719 1720
        ; If we're attempting to enable it, make sure nothing else has mapped itself in to page zero
        LDR     r8, =L2PT
        CMP     r1, #0
        LDRNE   r0, [r8]
        CMPNE   r0, #0
        MOVNE   r1, #-1
        FRAMSTR r1,NE
        EXIT    NE
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
        ; Set up temp DANode on the stack so we can use a Batcall to manage the mapping
        MOV     r2, sp
        MOV     r0, #DynAreaFlags_NotCacheable
        STR     r0, [r2, #DANode_Flags]
        MOV     r0, #0
        STR     r0, [r2, #DANode_Base]
        STR     r0, [r2, #DANode_Handler]
        CMP     r1, #1
        STREQ   r0, [r2, #DANode_Size]
        MOV     r0, #4096
        STRNE   r0, [r2, #DANode_Size]
        STR     r0, [r2, #DANode_MaxSize]
        MOV     r0, #ChangeDyn_Batcall
        MOV     r1, #4096
        RSBNE   r1, r1, #0
        SWI     XOS_ChangeDynamicArea
        FRAMSTR r0,VS
        EXIT    VS
        ; If we just enabled the page, fill it with the special value and then change it to read-only
        FRAMLDR r1
        RSBS    r1, r1, #1 ; invert returned state, to be correct for the above action
1742
        STRB    r1, [r12, #CompatibilityPageEnabled] ; Also update our state flag
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
        FRAMSTR r1
        EXIT    EQ
        MOV     r0, #0
        ADR     r1, %FT20
10
        CMP     r0, #%FT30-%FT20
        LDRLO   r2, [r1, r0]
        STR     r2, [r0], #4
        CMP     r0, #4096
        BNE     %BT10
        LDR     r7, [r12, #MaxCamEntry]
        MOV     r4, #0
        BL      logical_to_physical
        BL      physical_to_ppn
1757
        ; r5, r10-r11 corrupt, r3 = page number, r8,r9 = phys addr
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
        MOV     r0, #OSMemReason_FindAccessPrivilege
        MOV     r1, #2_100100
        MOV     r2, #2_100100
        SWI     XOS_Memory ; Get AP number for read-only access (will make area XN on ARMv6+)
        ORRVC   r11, r0, #DynAreaFlags_NotCacheable
        MOVVC   r2, r3
        MOVVC   r3, #0
        BLVC    BangCamUpdate
        EXIT

20
        ; Pattern to place in compatibility page
        DCD     &FDFDFDFD ; A few of words of invalid addresses, which should also be invalid instructions on ARMv5 (ARMv6+ will have this page non-executable, ARMv4 and lower can't have high processor vectors)
        DCD     &FDFDFDFD
        DCD     &FDFDFDFD
        DCD     &FDFDFDFD
        = "!!!!NULL.POINTER.DEREFERENCE!!!!", 0 ; Readable message if interpretered as a string. Also, all words are unaligned pointers.
        ALIGN
        DCD     0 ; Fill the rest with zero (typically, most of ZeroPage is zero)
30
 ]

1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
;----------------------------------------------------------------------------------------
;
;       In:     r0 = flags
;                       bit     meaning
;                       0-7     23 (reason code)
;                       8       0 = reserve, 1 = release reservation
;                       9-31    reserved (set to 0)
;               r1 = base page number
;               r2 = page count
;
;       Attempts to reserve (or remove the reservation) on a range of pages.
;       Dynamic areas can still use the memory, but only the code that reserved
;       it will be allowed to claim exclusive use over it (i.e. perform an
;       action that will cause PageFlags_Unavailable to be set)
;
;       This is useful for systems such as the PCI heap, where physically
;       contiguous memory is required, but the memory isn't needed all of the
;       time. By reserving the pages, it allows other regular DAs to make use
;       of the memory when the PCI heap is small. But when the PCI heap needs
;       to grow, it guarantees that (if there's enough free memory in the
;       system) the previously reserved pages can be allocated to the PCI heap.
;
;       Notes:
;
;       * Reservations are handled on an honour system; there's no checking
;         that the program that reserved the memory is the one attempting to
;         mark it Unavailable.
;       * For regular NeedsSpecificPages DAs, reserved pages can only be used
;         if the special "RESV" R0 return value is used (DAHandler_RESV)
;       * For PMP DAs, reserved pages can only be made Unavailable if the entry
;         in the page block also specifies the Reserved page flag. The actual
;         state of the Reserved flag can't be modified via PMP DA ops; the flag
;         is only used to indicate the caller's permission/intent to make an
;         already Reserved page Unavailable.
;       * If a PMP DA tries to make a Reserved page Unavailable without
;         specifying the Reserved flag, the kernel will try to swap it out for
;         a replacement page taken from the free pool (preserving the contents
;         and generating Service_PagesUnsafe / Service_PagesSafe, as if another
;         DA had claimed the page)
;
ReservePages ROUT
        Entry   "r1-r5"
        LDR     r3, =ZeroPage+CamEntriesPointer
        LDR     r4, [r3, #MaxCamEntry-CamEntriesPointer]
        LDR     r3, [r3]
        SUBS    r4, r4, r1
        SUBHSS  r4, r4, r2
        BLO     %FT90
        ADD     r3, r3, #CAM_PageFlags
        ADD     r3, r3, r1, LSL #CAM_EntrySizeLog2
        MOV     r5, r3
        TST     r0, #1:SHL:8
        BEQ     %FT20
10
        SUBS    r2, r2, #1
        EXIT    LO
        LDR     r4, [r5]
        BIC     r4, r4, #PageFlags_Reserved
        STR     r4, [r5], #CAM_EntrySize
        B       %BT10

20
        SUBS    r2, r2, #1
        EXIT    LO
        LDR     r4, [r5]
        TST     r4, #PageFlags_Unavailable  ; If already claimed
        TSTEQ   r4, #PageFlags_Reserved     ; Or already reserved
        BNE     %FT30                       ; Then complain
        ORR     r4, r4, #PageFlags_Reserved
        STR     r4, [r5], #CAM_EntrySize
        B       %BT20
        
30
        CMP     r3, r5
        LDRNE   r4, [r3]
        BICNE   r4, r4, #PageFlags_Reserved ; Remove reservations we just added
        STRNE   r4, [r3], #CAM_EntrySize
        BNE     %BT30
        ADRL    r0, ErrorBlock_CantGetPhysMem
        SETV
        EXIT

90
        ADRL    r0, ErrorBlock_BadParameters
        SETV
        EXIT

1867 1868 1869 1870
;----------------------------------------------------------------------------------------
;
;        In:    r0 = flags
;                       bit     meaning
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
;                       0-7     24 (reason code)
;                       8-31    reserved (set to 0)
;               r1 = low address (inclusive)
;               r2 = high address (exclusive)
;
;       Out:    r1 = access flags:
;               bit 0: completely readable in user mode
;               bit 1: completely writable in user mode
;               bit 2: completely readable in privileged modes
;               bit 3: completely writable in privileged modes
;               bit 4: partially readable in user mode
;               bit 5: partially writable in user mode
;               bit 6: partially readable in privileged modes
;               bit 7: partially writable in privileged modes
;               bit 8: completely physically mapped (i.e. IO memory)
;               bit 9: completely abortable (i.e. custom data abort handler)
1887 1888
;               bit 10: completely non-executable in user mode
;               bit 11: completely non-executable in privileged modes
1889 1890
;               bit 12: partially physically mapped
;               bit 13: partially abortable
1891 1892 1893
;               bit 14: partially non-executable in user mode
;               bit 15: partially non-executable in privileged modes
;               bits 16+: reserved
1894 1895
;
;       Return various attributes for the given memory region
1896 1897 1898

; NOTE: To make the flags easier to calculate, this routine calculates executability rather than non-executability. This means that unmapped memory has flags of zero. On exit we invert the sense of the bits in order to get non-executability (so that the public values are backwards-compatible with OS versions that didn't return executability information)
CMA_Completely_Inverted * CMA_Completely_UserXN + CMA_Completely_PrivXN
1899 1900

CMA_CheckL2PT          * 1<<31 ; Pseudo flag used internally for checking sparse areas
1901
CMA_DecodeAP           * 1<<30 ; Used with CheckL2PT to indicate AP flags should be decoded from L2PT
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920

; AP_ equivalents

CheckMemoryAccess ROUT
        Entry   "r0,r2-r10"
        CMP     r0, #24
        BNE     %FT99
        LDR     r10, =ZeroPage
        ; Set all the 'completely' flags, we'll clear them as we go along
        LDR     r0, =&0F0F0F0F
        ; Make end address inclusive so we don't have to worry so much about
        ; wrap around at 4G
        TEQ     r1, r2
        SUBNE   r2, r2, #1
        ; Split memory up into five main regions:
        ; * scratchspace/zeropage
        ; * application space
        ; * dynamic areas
        ; * IO memory
1921
        ; * special areas (stacks, ROM, HAL workspace, etc.)
1922 1923 1924 1925 1926 1927 1928 1929 1930
        ; All ranges are checked in increasing address order, so the
        ; completeness flags are returned correctly if we happen to cross from
        ; one range into another
        ; Note that application space can't currently be checked in DA block as
        ; (a) it's not linked to DAList/DynArea_AddrLookup
        ; (b) we need to manually add the abortable flag
        CMP     r1, #32*1024
        BHS     %FT10
        ; Check zero page
1931
        ASSERT  ProcVecs = ZeroPage
1932
     [ ZeroPage = 0
1933 1934
        MOV     r3, #0
        MOV     r4, #16*1024
1935
        LDR     r5, =CMA_ZeroPage
1936
        BL      CMA_AddRange
1937 1938 1939
     |
      [ CompatibilityPage
        ; Zero page compatibility page
1940 1941
        LDR     r3, =ZeroPage
        LDRB    r3, [r3, #CompatibilityPageEnabled]
1942 1943 1944 1945 1946 1947 1948 1949 1950
        CMP     r3, #0
        BEQ     %FT05
        MOV     r3, #0
        MOV     r4, #4096
        ; This represents our ideal access flags; it may not correspond to reality
        LDR     r5, =CMA_Partially_UserR+CMA_Partially_PrivR
        BL      CMA_AddRange
05
      ]
1951 1952 1953 1954
        ; DebuggerSpace
        ASSERT  DebuggerSpace < ScratchSpace
        LDR     r3, =DebuggerSpace
        LDR     r4, =(DebuggerSpace_Size + &FFF) :AND: &FFFFF000
1955
        LDR     r5, =CMA_DebuggerSpace
1956
        BL      CMA_AddRange
1957
     ]
1958 1959 1960
        ; Scratch space
        LDR     r3, =ScratchSpace
        MOV     r4, #16*1024
1961
        LDR     r5, =CMA_ScratchSpace
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
        BL      CMA_AddRange
10
        ; Application space
        ; Note - checking AplWorkSize as opposed to AplWorkMaxSize to cope with
        ; software which creates DAs within application space (e.g. Aemulor)
        LDR     r4, [r10, #AplWorkSize]
        CMP     r1, r4
        BHS     %FT20
        LDR     r3, [r10, #AMBControl_ws]
        LDR     r3, [r3, #:INDEX:AMBFlags]
1972
        LDR     r5, =CMA_AppSpace
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
        TST     r3, #AMBFlag_LazyMapIn_disable :OR: AMBFlag_LazyMapIn_suspend
        MOV     r3, #32*1024
        ORREQ   r5, r5, #CMA_Partially_Abort
        BL      CMA_AddRange2
20
        ; Dynamic areas
        LDR     r7, [r10, #IOAllocLimit]
        CMP     r1, r7
        BHS     %FT30
        ; Look through the quick lookup table until we find a valid DANode ptr
        LDR     r6, [r10, #DynArea_ws]
        MOV     r3, r1
1985
        TEQ     r6, #0 ; We can get called during ROM init, before the workspace is allocated (pesky OS_Heap validating its pointers)
1986
        ADD     r6, r6, #(:INDEX:DynArea_AddrLookup) :AND: &00FF
1987
        LDREQ   r9, [r10, #DAList] ; So just start at the first DA
1988
        ADD     r6, r6, #(:INDEX:DynArea_AddrLookup) :AND: &FF00
1989
        BEQ     %FT22
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
21
        AND     r8, r3, #DynArea_AddrLookupMask
        LDR     r9, [r6, r8, LSR #30-DynArea_AddrLookupBits]
        TEQ     r9, #0
        BNE     %FT22
        ; Nothing here, skip ahead to next block
        ADD     r3, r8, #DynArea_AddrLookupSize
        CMP     r3, r2
        BHI     %FT90 ; Hit end of search area
        CMP     r3, r7
        BLO     %BT21
        ; Hit end of DA area and wandered into IO area
        B       %FT30
22
        ; Now that we've found a DA to start from, walk through and process all
2005 2006
        ; the entries until we hit the end of the list, or any DAs above
        ; IOAllocLimit
2007 2008 2009 2010 2011
        LDR     r3, [r9, #DANode_Base]
        LDR     r6, [r9, #DANode_Flags]
        CMP     r3, r7
        BHS     %FT30
        ; Decode AP flags
2012 2013 2014
        LDR     r5, [r10, #MMU_PPLAccess]
        AND     lr, r6, #DynAreaFlags_APBits
        LDR     r5, [r5, lr, LSL #2]
2015 2016 2017
        TST     r6, #DynAreaFlags_PMP
        ORRNE   r5, r5, #CMA_DecodeAP
        TSTEQ   r6, #DynAreaFlags_SparseMap
2018
        LDREQ   lr, [r9, #DANode_Size]
2019
        LDRNE   r4, [r9, #DANode_SparseHWM] ; Use HWM as bounds when checking sparse/PMP areas
2020
        ORRNE   r5, r5, #CMA_CheckL2PT ; ... and request L2PT check
2021 2022
        ADDEQ   r4, r3, lr
        TST     r6, #DynAreaFlags_DoublyMapped ; Currently impossible for Sparse/PMP areas - so use of lr safe
2023 2024 2025 2026 2027
        SUBNE   r3, r3, lr
        BL      CMA_AddRange2
        LDR     r9, [r9, #DANode_Link]
        TEQ     r9, #0
        BNE     %BT22
2028
        ; Hit the end of the list
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
30
        ; IO memory
        CMP     r1, #IO
        BHS     %FT40
        MOV     r3, r1, LSR #20
        LDR     r4, [r10, #IOAllocPtr]
        MOV     r3, r3, LSL #20 ; Get MB-aligned addr of first entry to check
        CMP     r3, r4
        LDR     r7, =L1PT
        MOVLO   r3, r4 ; Skip all the unallocated regions
31
2040
        Push    "r0-r3"
2041 2042 2043
        LDR     r0, [r7, r3, LSR #20-2]
        BL      DecodeL1Entry           ; TODO bit wasteful. We only care about access privileges, but this call gives us cache info too.
        LDR     r5, [r10, #MMU_PPLAccess]
2044
        AND     lr, r2, #DynAreaFlags_APBits
2045
        LDR     r5, [r5, lr, LSL #2]
2046
        Pull    "r0-r3"
2047 2048 2049 2050 2051 2052 2053 2054
        ADD     r4, r3, #1<<20
        ORR     r5, r5, #CMA_Partially_Phys
        BL      CMA_AddRange2
        CMP     r4, #IO
        MOV     r3, r4
        BNE     %BT31
40
        ; Everything else!
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
        LDR     r3, =L1PT + (PhysicalAccess:SHR:18)
        LDR     r3, [r3]
        TEQ     r3, #0
        BEQ     %FT50
        TST     r3, #L1_SS
        LDR     r3, =PhysicalAccess
        LDREQ   r4, =&100000  ; section mapped
        LDRNE   r4, =&1000000 ; supersection mapped
        ; Assume IO memory mapped there
      [ MEMM_Type = "VMSAv6"
        LDR     r5, =CMA_Partially_PrivR+CMA_Partially_PrivW+CMA_Partially_Phys
      |
        LDR     r5, =CMA_Partially_PrivR+CMA_Partially_PrivW+CMA_Partially_PrivXN+CMA_Partially_Phys
      ]
        BL      CMA_AddRange
50
        ASSERT  HALWorkspace > PhysicalAccess
2072 2073
        LDR     r3, =HALWorkspace
        LDR     r4, [r10, #HAL_WsSize]
2074
        LDR     r5, =CMA_HALWorkspace
2075 2076 2077 2078
        BL      CMA_AddRange
        ASSERT  IRQStackAddress > HALWorkspace
        LDR     r3, =IRQStackAddress
        LDR     r4, =IRQStackSize
2079
        LDR     r5, =CMA_IRQStack
2080 2081 2082 2083
        BL      CMA_AddRange
        ASSERT  SVCStackAddress > IRQStackAddress
        LDR     r3, =SVCStackAddress
        LDR     r4, =SVCStackSize
2084
        LDR     r5, =CMA_SVCStack
2085 2086 2087 2088
        BL      CMA_AddRange
        ASSERT  ABTStackAddress > SVCStackAddress
        LDR     r3, =ABTStackAddress
        LDR     r4, =ABTStackSize
2089
        LDR     r5, =CMA_ABTStack
2090 2091 2092 2093
        BL      CMA_AddRange
        ASSERT  UNDStackAddress > ABTStackAddress
        LDR     r3, =UNDStackAddress
        LDR     r4, =UNDStackSize
2094
        LDR     r5, =CMA_UNDStack
2095
        BL      CMA_AddRange
2096
        ASSERT  DCacheCleanAddress > UNDStackAddress
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
        LDR     r4, =DCacheCleanAddress+DCacheCleanSize
        CMP     r1, r4
        BHS     %FT60
        ; Check that DCacheCleanAddress is actually used
        Push    "r0-r2,r9"
        AddressHAL r10
        MOV     a1, #-1
        CallHAL HAL_CleanerSpace
        CMP     a1, #-1
        Pull    "r0-r2,r9"
        BEQ     %FT60
        SUB     r3, r4, #DCacheCleanSize
        MOV     r4, #DCacheCleanSize
2110 2111
        ; Mark as IO, it may not be actual memory there
        LDR     r5, =CMA_DCacheClean+CMA_Partially_Phys
2112 2113 2114 2115 2116
        BL      CMA_AddRange
60
        ASSERT  KbuffsBaseAddress > DCacheCleanAddress
        LDR     r3, =KbuffsBaseAddress
        LDR     r4, =(KbuffsSize + &FFF) :AND: &FFFFF000
2117
        LDR     r5, =CMA_Kbuffs
2118 2119 2120 2121 2122 2123 2124 2125
        BL      CMA_AddRange
        ASSERT  HALWorkspaceNCNB > KbuffsBaseAddress
        LDR     r3, [r10, #HAL_Descriptor]
        LDR     r3, [r3, #HALDesc_Flags]
        TST     r3, #HALFlag_NCNBWorkspace
        BEQ     %FT70
        LDR     r3, =HALWorkspaceNCNB
        LDR     r4, =32*1024
2126
        LDR     r5, =CMA_HALWorkspaceNCNB
2127 2128
        BL      CMA_AddRange
70
2129
        ASSERT  L2PT > HALWorkspaceNCNB
2130 2131
        LDR     r3, =L2PT
        MOV     r4, #4*1024*1024
2132
        LDR     r5, =CMA_PageTablesAccess+CMA_CheckL2PT ; L2PT contains gaps due to logical indexing
2133 2134 2135 2136
        BL      CMA_AddRange
        ASSERT  L1PT > L2PT
        LDR     r3, =L1PT
        MOV     r4, #16*1024
2137
        LDR     r5, =CMA_PageTablesAccess
2138
        BL      CMA_AddRange
2139 2140 2141
        ASSERT  CursorChunkAddress > L1PT
        LDR     r3, =CursorChunkAddress
        MOV     r4, #32*1024
2142
        LDR     r5, =CMA_CursorChunk
2143
        BL      CMA_AddRange
2144
        ASSERT  CAM > CursorChunkAddress
2145 2146
        LDR     r3, =CAM
        LDR     r4, [r10, #SoftCamMapSize]
2147
        LDR     r5, =CMA_CAM
2148 2149 2150 2151
        BL      CMA_AddRange
        ASSERT  ROM > CAM
        LDR     r3, =ROM
        LDR     r4, =OSROM_ImageSize*1024
2152
        LDR     r5, =CMA_ROM
2153 2154
        BL      CMA_AddRange
        ; Finally, high processor vectors/relocated zero page
2155
        ASSERT  ProcVecs = ZeroPage
2156 2157 2158 2159
      [ ZeroPage > 0
        ASSERT  ZeroPage > ROM
        MOV     r3, r10
        LDR     r4, =16*1024
2160
        LDR     r5, =CMA_ZeroPage
2161 2162 2163 2164 2165 2166
        BL      CMA_AddRange
      ]
90
        ; If there's anything else, we've wandered off into unallocated memory
        LDR     r3, =&0F0F0F0F
        BIC     r1, r0, r3
2167
        B       CMA_Done
2168 2169 2170

99
        PullEnv
2171
        B       MemoryBadParameters
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204

        ; Add range r3..r4 to attributes in r0
        ; Corrupts r8
CMA_AddRange ROUT ; r3 = start, r4 = length
        ADD     r4, r3, r4
CMA_AddRange2 ; r3 = start, r4 = end (excl.)
        LDR     r8, =&0F0F0F0F
        ; Increment r1 and exit if we hit r2
        ; Ignore any ranges which are entirely before us
        CMP     r1, r4
        MOVHS   pc, lr
        ; Check for any gap at the start, i.e. r3 > r1
        CMP     r3, r1
        BICHI   r0, r0, r8
        MOVHI   r1, r3 ; Update r1 for L2PT check code
        ; Exit if the range starts after our end point
        CMP     r3, r2
        BHI     %FT10
        ; Process the range
        TST     r5, #CMA_CheckL2PT
        BNE     %FT20
        CMP     r3, r4 ; Don't apply any flags for zero-length ranges
04      ; Note L2PT check code relies on NE condition here
        ORR     r8, r5, r8
        ORRNE   r0, r0, r5 ; Set new partial flags
        ANDNE   r0, r0, r8, ROR #4 ; Discard completion flags which aren't for this range
05
        CMP     r4, r2
        MOV     r1, r4 ; Continue search from the end of this range
        MOVLS   pc, lr
10
        ; We've ended inside this range
        MOV     r1, r0
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
CMA_Done
        ; Invert the sense of the executability flags
        ;               Completely_X Partially_X -> Completely_XN Partially_XN
        ; Completely X             1           1                0            0
        ; Partially X              0           1                0            1
        ; XN                       0           0                1            1
        ; I.e. swap the positions of the two bits and invert them
        EOR     r0, r1, r1, LSR #4      ; Completely EOR Partially
        MVN     r0, r0                  ; Invert as well as swap
        AND     r0, r0, #CMA_Completely_Inverted ; Only touch these bits
        EOR     r1, r1, r0              ; Swap + invert Completely flags
        EOR     r1, r1, r0, LSL #4      ; Swap + invert Partially flags
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
        CLRV
        EXIT

20
        ; Check L2PT for sparse region r1..min(r2+1,r4)
        ; r4 guaranteed page aligned
        CMP     r3, r4
        BIC     r5, r5, #CMA_CheckL2PT
        BEQ     %BT05
        Push    "r2,r4,r5,r8,r9,r10,lr"
        LDR     lr, =&FFF
        CMP     r4, r2
        ADDHS   r2, r2, #4096
        BICHS   r2, r2, lr
        MOVLO   r2, r4
        ; r2 is now page aligned min(r2+1,r4)
2233 2234 2235
        TST     r5, #CMA_DecodeAP
        BIC     r4, r1, lr
        BNE     %FT35
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
        MOV     r10, #0
30
        BL      logical_to_physical
        ORRCC   r10, r10, #1
        ADD     r4, r4, #4096
        ORRCS   r10, r10, #2
        CMP     r4, r2
        BNE     %BT30
        CMP     r10, #2
        ; 01 -> entirely mapped
        ; 10 -> entirely unmapped
        ; 11 -> partially mapped
        Pull    "r2,r4,r5,r8,r9,r10,lr"
        BICHS   r0, r0, r8 ; Not fully mapped, clear completion flags
        BNE     %BT04 ; Partially/entirely mapped
        B       %BT05 ; Completely unmapped

2253 2254 2255 2256 2257 2258 2259 2260
35
        ; Check L2PT, with AP decoding on a per-page basis
40
        LDR     r10, =&0F0F0F0F
        BL      logical_to_physical
        BICCS   r0, r0, r10 ; Not fully mapped, clear completion flags
        BCS     %FT45
        ; Get the L2PT entry and decode the flags
2261
        Push    "r0-r3"
2262
        LDR     r8, =L2PT
2263 2264
        LDR     r0, [r8, r4, LSR #10]
        BL      DecodeL2Entry           ; TODO bit wasteful. We only care about access privileges, but this call gives us cache info too. Also, if we know the L2PT backing exists (it should do) we could skip the logical_to_physical call
2265
        ; r2 = DA flags
2266 2267 2268
        ; Extract and decode AP
        LDR     r0, =ZeroPage
        LDR     r5, [r0, #MMU_PPLAccess]
2269
        AND     lr, r2, #DynAreaFlags_APBits
2270
        LDR     r5, [r5, lr, LSL #2]
2271
        Pull    "r0-r3"
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
        ORR     r10, r5, r10
        ORR     r0, r0, r5 ; Set new partial flags
        AND     r0, r0, r10, ROR #4 ; Discard completion flags which aren't for this range
45
        ADD     r4, r4, #4096
        CMP     r4, r2
        BNE     %BT40
        Pull    "r2,r4,r5,r8,r9,r10,lr"
        B       %BT05

2282 2283
        LTORG

Neil Turton's avatar
Neil Turton committed
2284
        END