math 32.2 KB
Newer Older
Neil Turton's avatar
Neil Turton committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
/* Copyright 1996 Acorn Computers Ltd
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/* math.c: ANSI draft (X3J11 May 86) library code, section D.5 */
/* Copyright (C) Codemist Ltd, 1988 */

/* version 0.04b */
/* Nov 87: fix bug in ibm frexp(-ve arg).                                   */

/*
 * This version of the code takes the view that whenever there is an
 * error a NaN should be handed back (as well as errno getting set). The
 * value HUGE_VAL is used, which is not actually a NaN but which will
 * often lead to exponent overflow pretty soon if it is used.  ACN is
 * unclear if this is sensible, and has had a program fall over when
 * atan2(0.0, 0.0) handed back HUGE_VAL rather than some less vicious
 * value (e.g. 0.0).  He can imagine people who expect pow(0.0, 0.0) to
 * be 1.0 (or maybe 0.0, but certainly not HUGE_VAL), and who expect
 * sin(x) to be <= 1.0 in absolute value regardless of anything.  Thus
 * the current state is OK if we are being strict, but mey be unfriendly
 * in some cases?  Thoughts and comments, anybody?
 */

#include "hostsys.h"
#include <limits.h>
#include <errno.h>

/* This file contains code for most of the math routines from <math.h>      */

/* On the ARM some of these routines are implemented as floating point      */
/* opcodes and as such appear in startup.s                                  */

#ifndef NO_FLOATING_POINT

#include <math.h>                          /* for forward references */

#ifdef IBMFLOAT
const double __huge_val = 7.2370055773322621e+75;
#else
/* On the ARM, this has moved into the library's static data area */
/* so that it still works with the Shared C Library module.       */
/* const double __huge_val = 1.79769313486231571e+308; */
#endif

#ifdef IBMFLOAT

double frexp(d, lvn)
double d; int *lvn;
{
    fp_number d1;
    int n;
    if (d==0.0)
/* I worry a little about signed zeros here. I hope that -0.0 == 0.0     */
    {   *lvn = 0;
        return 0.0;
    }
    d1.d = d;
    n = 4*(d1.i.x - 0x40);        /* excess 64 exponent */
    d1.i.x = 0x40;
    d = d1.d;
    /* Note that the following code works for unnormalised numbers, but  */
    /* can then take 55 cycles to converge instead of usual 3 max.       */
    while ((d>=0 ? d : -d) < 0.5) d = d+d, n--;
    /* Now d is most definitely normalised.                              */
    *lvn = n;
    return d;
}


double ldexp(d, n)
double d; int n;
{
    fp_number d1;
    int nx;
    if (d==0.0) return 0.0;         /* special case                      */
    d1.d = d;
    nx = d1.i.x + (n & ~3)/4;
    n &= 3;
#ifndef DO_NOT_SUPPORT_UNNORMALIZED_NUMBERS
    /* The following code gets the msd/expt right for unnormalised nos.  */
    d1.i.x = 0x40;
    d1.d += 0.0;                    /* i.e. normalise                    */
    nx += d1.i.x - 0x40;
#endif
    {   int mhi = d1.i.mhi;
        int nx1 = (mhi & 0x00c00000)==0 ?
                   ((mhi & 0x00200000)==0 ? n - 3 : n - 2) :
                   ((mhi & 0x00800000)==0 ? n - 1 : n);
        if (nx1 > 0) nx++, n -= 4;
/* That just dealt with the fact that in IBM format the exponent is for  */
/* base 16 and so scaling by a power of two can involve a real multiply. */
/* I now know what the true exponent (nx) in the result will be.         */
    }
    if (nx > 0x7f)                  /* Overflow (maybe do a raise() ?)   */
    {   d1.i.x = 0x7f;
        d1.i.mhi = 0xffffff;
        d1.i.mlo = 0xffffffff;
        return d1.d;
    }
    if (nx < 0)                     /* Deal with underflow/unnormalised  */
    {   if (nx <= -14) return 0.0;
        d1.i.x = 0;
        while (nx < 0) d1.d /= 16, nx++;     /* de-normalise gracefully  */
    }
    d1.i.x = nx;
    {   double d2;
        switch (n)
        {
case -3:d2 = 0.125; break;
case -2:d2 = 0.25;  break;
case -1:d2 = 0.5;   break;
default:   /* avoid dataflow whinge */
case 0: d2 = 1.0;   break;
case 1: d2 = 2.0;   break;
case 2: d2 = 4.0;   break;
case 3: d2 = 8.0;   break;
        }
        d1.d *= d2;
    }
    return d1.d;
}


#else       /* Here is the IEEE format stuff */

#ifndef DO_NOT_SUPPORT_UNNORMALIZED_NUMBERS

double frexp(d, lvn)
double d; int *lvn;
{
/* This version works even if d starts off as an unnormalized number in  */
/* the IEEE sense. But in that special case it will be mighty slow!      */
/* By that we mean at most 52 iterations for the smallest number.        */
    fp_number d1;
    int n;
    if (d==0.0)
    {   *lvn = 0;
        return 0.0;
    }
    d1.d = d;
    if ((n = d1.i.x - 0x3fe) == -0x3fe)
    {   int flag;
/* Here d1 has zero in its exponent field - this means that the mantissa */
/* is un-normalized. I have to shift it left (at least one bit) until a  */
/* suitable nonzero bit appears to go in the implicit-bit place in the   */
/* fractional result. For each bit shifted I need to adjust the final    */
/* exponent that will be returned.                                       */
/* I have already tested to see if d was zero so the fllowing loop MUST  */
/* terminate.                                                            */
        do
        {   flag = d1.i.mhi & 0x00080000;
            d1.i.mhi = (d1.i.mhi << 1) | (d1.i.mlo >> 31);
            d1.i.mlo = d1.i.mlo << 1;
            n--;
        } while (flag==0);
    }
    *lvn = n;
    d1.i.x = 0x3fe;
    return d1.d;
}

#else   /* DO_NOT_SUPPORT_UNNORMALIZED_NUMBERS */

double frexp(d, lvn)
double d; int *lvn;
{
    fp_number d1;
    if (d==0.0)
    {   *lvn = 0;
        return 0.0;
    }
    d1.d = d;
    *lvn = d1.i.x - 0x3fe;
    d1.i.x = 0x3fe;
    return d1.d;
}

#endif   /* DO_NOT_SUPPORT_UNNORMALIZED_NUMBERS */

double ldexp(d, n)
double d; int n;
{
    fp_number d1;
    int nx;
    if (d==0.0) return 0.0;        /* special case                       */
    d1.d = d;
    nx = (int) d1.i.x + n;
    if (nx >= 0x7ff)
    { errno = ERANGE;
      return HUGE_VAL;              /* overflow yields 'infinity'        */
    }
/* Maybe I should be prepared to generate un-normalized numbers here, or */
/* even deal with input d un-normalized and n positive yielding a proper */
/* result. All that seems like a lot of work and so I will not even try  */
/* in this version of the code!                                          */
    else if (nx <= 0) return 0.0;  /* deal with underflow                */
    d1.i.x = nx;
    return (d1.d);
}

#endif


#ifdef IBMFLOAT
#define _exp_arg_limit 174.673089501106208
#else
#define _exp_arg_limit 709.78271289338397
#endif

/* machine independent code - but beware the 1e-20's */

#define _pi_       3.14159265358979323846
#define _pi_3      1.04719755119659774615
#define _pi_2      1.57079632679489661923
#define _pi_4      0.78539816339744830962
#define _pi_6      0.52359877559829887038
#define _sqrt_half 0.70710678118654752440

#ifndef HOST_HAS_TRIG
/* The ARM has a load of trig functions etc available as opcodes, so     */
/* has no need for these software versions shown here.                   */

#undef sin
#undef cos
#undef atan

static double _sincos(double x, double y, int sign, int coscase)
{
    int n;
    double xn, f, g, r;
    if (y >= 1.0e9)     /* fail if argument is overlarge                 */
    {   errno = EDOM;
        return -HUGE_VAL;
    }
    n = (int) ((y + _pi_2) / _pi_);
    xn = (double) n;
    if ((n & 1) != 0) sign = -sign;
    if (coscase) xn = xn - 0.5;
/* Note that these days C is REQUIRED to observe the brackets used here. */
/* The compiler is NOT allowed to re-associate the additions.            */
#ifdef IBMFLOAT
    {   double x1 = (double)(int)x;
/* observe that the range check on y assures me that (int)x is OK.       */
        double x2 = x - x1;
        f = ((x1 - xn*3.1416015625) + x2) + xn*8.908910206761537356617e-6;
    }
#else
    f = (x - xn*3.1416015625) + xn*8.908910206761537356617e-6;
#endif
/* I expect that the absolute value of f is less than pi/2 here          */
    if (fabs(f) >= 1.e-10)
#define _sincos_r1  -0.16666666666666665052
#define _sincos_r2   0.83333333333331650315e-2
#define _sincos_r3  -0.19841269841201840457e-3
#define _sincos_r4   0.27557319210152756119e-5
#define _sincos_r5  -0.25052106798274584544e-7
#define _sincos_r6   0.16058936490371589114e-9
#define _sincos_r7  -0.76429178068910467734e-12
#define _sincos_r8   0.27204790957888846175e-14
    {   g = f*f;
        r = ((((((((_sincos_r8) * g + _sincos_r7) * g + _sincos_r6) * g +
                    _sincos_r5) * g + _sincos_r4) * g + _sincos_r3) * g +
                    _sincos_r2) * g + _sincos_r1) * g;
        f += f*r;
    };
    if (sign < 0) return -f;
    else return f;
}

double sin(double x)
{
    if (x < 0.0) return _sincos(-x, -x, -1, 0);
    else return _sincos(x, x, 1, 0);
}

double cos(double x)
{
    if (x < 0.0) return _sincos(-x, _pi_2 - x, 1, 1);
    else return _sincos(x, _pi_2 + x, 1, 1);
}

#ifdef IBMFLOAT
#define _exp_negative_arg_limit -180.218266945585778
#else
/* NB: the following value is a proper limit provided denormalised       */
/* values are not being supported. It would need to be changed if they   */
/* were to start existing.                                               */
#define _exp_negative_arg_limit -708.39641853226408
#endif

double exp(double x)
{
    int n;
    double xn, g, z, gp, q, r;
    if (x > _exp_arg_limit)
    {   errno = ERANGE;
        return HUGE_VAL;
    }
    if (x < _exp_negative_arg_limit) return 0.0;
    if (fabs(x) < 1.e-20) return 1.0;
/* In C the cast (int)x truncates towards zero. Here I want to round.    */
    n = (int)((x >= 0 ? 0.5 : -0.5) + 1.44266950408889634074 * x);
    xn = (double)n;
#ifdef IBMFLOAT
    {   double x1 = (double)(int)x;
        double x2 = x - x1;
        g = ((x1 - xn * 0.693359375) + x2) - xn * (-2.1219444005469058277e-4);
    }
#else
    g = (x - xn * 0.693359375) - xn * (-2.1219444005469058277e-4);
#endif
    z = g * g;
#define  _exp_p0  0.249999999999999993
#define  _exp_p1  0.694360001511792852e-2
#define  _exp_p2  0.165203300268279130e-4
#define  _exp_q0  0.500000000000000000
#define  _exp_q1  0.555538666969001188e-1
#define  _exp_q2  0.495862884905441294e-3
    gp = ((_exp_p2 * z + _exp_p1) * z + _exp_p0) * g;
    q = (_exp_q2 * z + _exp_q1) * z + _exp_q0;
    r = 0.5 + gp / (q - gp);
    return ldexp(r, n + 1);
}

double log(double x)
{
    double f, znum, zden, z, w, r, xn;
    int n;
    if (x <= 0.0)
    {   if (x==0.0)
        {   errno = ERANGE;
            return -HUGE_VAL;
        } else
        { errno = EDOM;
          return -HUGE_VAL;
        }
    }
    f = frexp(x, &n);
    if (f > _sqrt_half)
    {   znum = (f - 0.5) - 0.5;
        zden = f * 0.5 + 0.5;
    }
    else
    {   n -= 1;
        znum = f - 0.5;
        zden = znum * 0.5 + 0.5;
    }
    z = znum / zden;
    w = z * z;
#define _log_a0 -0.64124943423745581147e2
#define _log_a1  0.16383943563021534222e2
#define _log_a2 -0.78956112887491257267e0
#define _log_b0 -0.76949932108494879777e3
#define _log_b1  0.31203222091924532844e3
#define _log_b2 -0.35667977739034646171e2
    r = w * ( ((_log_a2 * w + _log_a1) * w + _log_a0) /
              (((w + _log_b2) * w + _log_b1) * w + _log_b0) );
    r = z + z * r;
    xn = (double)n;
    return (xn*(-2.121944400546905827679e-4) + r) + xn*(355.0/512.0);
}

double log10(double x)
{
    return log(x) * 0.43429448190325182765;  /* log10(e) */
}

double sqrt(double x)
{
    fp_number f;
    double y0;
    int n;
    if (x <= 0.0)
    {   if (x < 0.0) errno = EDOM;
        return -HUGE_VAL;
    }
    f.d = x;
#ifdef IBMFLOAT
    n = f.i.x - 0x40;
    f.i.x = 0x40;
#else
    n = f.i.x - 0x3fe;
    f.i.x = 0x3fe;
#endif
    {   double fd = f.d;
#ifdef IBMFLOAT
        y0 = 0.223607 + 0.894427 * fd;
#else
        y0 = 0.41731 + 0.59016 * fd;
#endif
        y0 = 0.5 * (y0 + fd/y0);
        y0 = 0.5 * (y0 + fd/y0);
        y0 = 0.5 * (y0 + fd/y0);
#ifdef IBMFLOAT
#define __EPS 2.2204460492503131e-16
        y0 = y0 + (0.5 * (fd/y0 - y0) + __EPS/32.0);
#endif
    }
    if (n & 1)
    {
#ifdef IBMFLOAT
        y0 = (y0 + __EPS/8.0) * 0.25;
#else
        y0 *= _sqrt_half;
#endif
        n += 1;
    }
    n /= 2;
    f.d = y0;
    f.i.x += n;
    return f.d;
}

double _tancot(double x, int iflag)
{
    int n;
    double f, g, xnum, xden, y, xn;
    y = fabs(x);
    if (y >= 1.0e9)     /* fail if argument is overlarge                 */
    {   errno = EDOM;
        return -HUGE_VAL;
    }
    n = (int) ((2.0 * y + _pi_2) / _pi_);
    if (x < 0) n = - n;
    xn = (double) n;
#ifdef IBMFLOAT
    {   double x1 = (double)(int)x;
        double x2 = x - x1;
        f = ((x1 - xn*1.57080078125) + x2) + xn*4.454455103380768678308e-6;
    }
#else
    f = (x - xn*1.57080078125) + xn*4.454455103380768678308e-6;
#endif
    if (fabs(f) > 1.e-10)
    {   g = f * f;
#define _tan_p1 -0.13338350006421960681
#define _tan_p2  0.34248878235890589960e-2
#define _tan_p3 -0.17861707342254426711e-4
#define _tan_q0  1.00000000000000000000
#define _tan_q1 -0.46671683339755294240
#define _tan_q2  0.25663832289440112864e-1
#define _tan_q3 -0.31181531907010027307e-3
#define _tan_q4  0.49819433993786512270e-6
        xnum = ((_tan_p3*g + _tan_p2)*g + _tan_p1)*g*f + f;
        xden = (((_tan_q4*g + _tan_q3)*g + _tan_q2)*g + _tan_q1)*g + _tan_q0;
    }
    else
    {   xnum = f;
        xden = 1.0;
    }
/* It is probable that overflow can never occur here, since floating     */
/* point values fall about or more 1.e-16 apart near singularities       */
/* of the tangent function.                                              */
    if (iflag==0)
    {   if ((n & 1) == 0) return xnum / xden;
        else return - xden / xnum;
    }
    else
    {   if ((n & 1) == 0) return xden / xnum;
        else return - xnum / xden;
    }
}

double tan(double x)
{
    return _tancot(x, 0);
}

double _cot(double x)      /* Not specified by ANSI hence the funny name */
{
    if (fabs(x) < 1.0/HUGE_VAL)
    {   errno = ERANGE;
        if (x < 0.0) return -HUGE_VAL;
        else return HUGE_VAL;
    }
    return _tancot(x, 1);
}

double atan(double x)
{
    int n;
    double f;
    const static double a[4] = { 0.0, _pi_6, _pi_2, _pi_3 };
    f = fabs(x);
    if (f > 1.0)
    {   f = 1.0 / f;
        n = 2;
    }
    else n = 0;
#define _two_minus_root_three 0.26794919243112270647
#define _sqrt_three           1.73205080756887729353
#define _sqrt_three_minus_one 0.73205080756887729353
    if (f > _two_minus_root_three)
    {   f = (((_sqrt_three_minus_one*f - 0.5) - 0.5) + f) / (_sqrt_three + f);
        n++;
    }
    if (fabs(f) > 1.e-10)
    {   double g = f * f;
        double r;
#define _atan_p0    -0.13688768894191926929e2
#define _atan_p1    -0.20505855195861651981e2
#define _atan_p2    -0.84946240351320683534e1
#define _atan_p3    -0.83758299368150059274
#define _atan_q0     0.41066306682575781263e2
#define _atan_q1     0.86157349597130242515e2
#define _atan_q2     0.59578436142597344465e2
#define _atan_q3     0.15024001160028576121e2
        r = ((((_atan_p3*g + _atan_p2)*g + _atan_p1)*g + _atan_p0)*g) /
             ((((g + _atan_q3)*g + _atan_q2)*g + _atan_q1)*g + _atan_q0);
        f = f + f * r;
    }
    if (n > 1) f = -f;
    f = f + a[n];
    if (x < 0) return -f;
    else return f;
}

double _asinacos(double x, int flag)
{
    int i;
    double y, g, r;
    const static double a[2] = {0.0, _pi_4 };
    const static double b[2] = {_pi_2, _pi_4 };
    y = fabs(x);
    if (y < 1.e-10) i = flag;
    else
    {   if (y > 0.5)
        {   i = 1 - flag;
            if (y > 1.0)
            {   errno = EDOM;
                return -HUGE_VAL;
            }
            g = ((0.5 - y) + 0.5) * 0.5;
            y = -2.0 * sqrt(g);
        }
        else
        {   i = flag;
            g = y * y;
        }
#define _asin_p1    -0.27368494524164255994e2
#define _asin_p2     0.57208227877891731407e2
#define _asin_p3    -0.39688862997504877339e2
#define _asin_p4     0.10152522233806463645e2
#define _asin_p5    -0.69674573447350646411e0
#define _asin_q0    -0.16421096714498560795e3
#define _asin_q1     0.41714430248260412556e3
#define _asin_q2    -0.38186303361750149284e3
#define _asin_q3     0.15095270841030604719e3
#define _asin_q4    -0.23823859153670238830e2
        r = (((((_asin_p5*g + _asin_p4)*g + _asin_p3)*g +
                              _asin_p2)*g + _asin_p1)*g)      /
             (((((g + _asin_q4)*g + _asin_q3)*g +
                      _asin_q2)*g + _asin_q1)*g + _asin_q0);
        y = y + y*r;
    }
    if (flag==0)
    {   y = (a[i] + y) + a[i];
        if (x<0) y = -y;
    }
    else if (x < 0) y = (b[i] + y) + b[i];
    else y = (a[i] - y) + a[i];
    return y;
}

double asin(double x)
{
    return _asinacos(x, 0);
}

double acos(double x)
{
    return _asinacos(x, 1);
}

double pow(double x, double y)
{
    int sign = 0, m, p, i, mdash, pdash;
    double g, r, z, v, u1, u2;
/* The table a1[] contains properly rounded values for 2**(i/16), and    */
/* a2[] contains differences between the true values of 2**(i/16) and    */
/* the a1[] values for odd i.                                            */
#ifdef IBMFLOAT
    const static double a1[17] = {
/* It is painfully important that the following 17 floating point        */
/* numbers are read in to yield the quantities shown on the right.       */
        1.000000000000000000,    /* 41100000:00000000 */
        0.957603280698573644,    /* 40f5257d:152486cc */
        0.917004043204671229,    /* 40eac0c6:e7dd2439 */
        0.878126080186649740,    /* 40e0ccde:ec2a94e1 */
        0.840896415253714543,    /* 40d744fc:cad69d6b */
        0.805245165974627155,    /* 40ce248c:151f8481 */
        0.771105412703970413,    /* 40c5672a:115506db */
        0.738413072969749659,    /* 40bd08a3:9f580c37 */
        0.707106781186547531,    /* 40b504f3:33f9de65 */
        0.677127773468446367,    /* 40ad583e:ea42a14b */
        0.648419777325504834,    /* 40a5fed6:a9b15139 */
        0.620928906036742028,    /* 409ef532:6091a112 */
        0.594603557501360527,    /* 409837f0:518db8a9 */
        0.569394317378345823,    /* 4091c3d3:73ab11c3 */
        0.545253866332628830,    /* 408b95c1:e3ea8bd7 */
        0.522136891213706919,    /* 4085aac3:67cc487b */
        0.500000000000000000     /* 40800000:00000000 */
        };
    const static double a2[8] = {
        2.4114209503420287e-18,
        9.2291566937243078e-19,
        -1.5241915231122319e-18,
        -3.5421849765286817e-18,
        -3.1286215245415074e-18,
        -4.4654376565694489e-18,
        2.9305146686217562e-18,
        1.1260851040933474e-18
        };
#else /* IEEE format */
    const static double a1[17] = {
/* It is painfully important that the following 17 floating point        */
/* numbers are read in to yield the quantities shown on the right.       */
        1.0,                    /* 3ff00000:00000000 */
        0.9576032806985737,     /* 3feea4af:a2a490da */
        0.91700404320467121,    /* 3fed5818:dcfba487 */
        0.87812608018664973,    /* 3fec199b:dd85529c */
        0.8408964152537145,     /* 3feae89f:995ad3ad */
        0.80524516597462714,    /* 3fe9c491:82a3f090 */
        0.77110541270397037,    /* 3fe8ace5:422aa0db */
        0.73841307296974967,    /* 3fe7a114:73eb0187 */
        0.70710678118654757,    /* 3fe6a09e:667f3bcd */
        0.67712777346844632,    /* 3fe5ab07:dd485429 */
        0.64841977732550482,    /* 3fe4bfda:d5362a27 */
        0.620928906036742,      /* 3fe3dea6:4c123422 */
        0.59460355750136051,    /* 3fe306fe:0a31b715 */
        0.56939431737834578,    /* 3fe2387a:6e756238 */
        0.54525386633262884,    /* 3fe172b8:3c7d517b */
        0.52213689121370688,    /* 3fe0b558:6cf9890f */
        0.5                     /* 3fe00000:00000000 */
        };
    const static double a2[8] = {
        -5.3099730280915798e-17,
        1.4800703477186887e-17,
        1.2353596284702225e-17,
        -1.7419972784343138e-17,
        3.8504741898901863e-17,
        2.3290137959059465e-17,
        4.4563878092065126e-17,
        4.2759448527536718e-17
        };
#endif
    if (y == 1.0) return x;
    if (x <= 0.0)
    {   int ny;
        if (x==0.0)
        {   if (y <= 0.0)
            {   errno = EDOM;
                if (y==0.0) return 1.0;
                return -HUGE_VAL;
            }
            return 0.0;
        }
        if (y < (double)INT_MIN || y > (double)INT_MAX ||
            (double)(ny = (int)y) != y)
        {   errno = EDOM;
            return -HUGE_VAL;
        }
/* Here y is an integer and x is negative.                               */
        x = -x;
        sign = (ny & 1);
    }
    if (y == 2.0 && x < 1.e20) return x*x;  /* special case.             */
    g = frexp(x, &m);
    p = 0;
    if (g <= a1[8]) p = 8;
    if (g <= a1[p+4]) p += 4;
    if (g <= a1[p+2]) p += 2;
    z = ((g - a1[p+1]) - a2[p/2]) / (0.5*g + 0.5*a1[p+1]);
/* Expect abs(z) <= 0.044 here */
    v = z * z;
#define _pow_p1 0.83333333333333211405e-1
#define _pow_p2 0.12500000000503799174e-1
#define _pow_p3 0.22321421285924258967e-2
#define _pow_p4 0.43445775672163119635e-3
    r = (((_pow_p4*v + _pow_p3)*v + _pow_p2)*v + _pow_p1)*v*z;
#define _pow_k 0.44269504088896340736
    r = r + _pow_k * r;
    u2 = (r + z * _pow_k) + z;
#define _reduce(v) ((double)(int)(16.0*(v))*0.0625)
    u1 = (double)(16*m-p-1) * 0.0625;
    {   double y1 = _reduce(y);
        double y2 = y - y1;
        double w = u2*y + u1*y2;
        double w1 = _reduce(w);
        double w2 = w - w1;
        int iw1;
        w = w1 + u1*y1;
        w1 = _reduce(w);
        w2 = w2 + (w - w1);
        w = _reduce(w2);
        iw1 = (int)(16.0*(w1+w));
        w2 = w2 - w;
/* The following values have been determined experimentally, buth their  */
/* values are not very critical.                                         */
#ifdef IBMFLOAT
#  define _negative_pow_limit -4160
#else
#  define _negative_pow_limit -16352
#endif
        if (iw1 < _negative_pow_limit)
        {   errno = ERANGE;         /* Underflow certain                 */
            return 0.0;
        }
        if (w2 > 0.0)
        {   iw1 += 1;
            w2 -= 0.0625;
        }
        if (iw1 < 0) i = 0;
        else i = 1;
        mdash = iw1/16 + i;
        pdash = 16*mdash - iw1;
#define _pow_q1 0.69314718055994529629
#define _pow_q2 0.24022650695909537056
#define _pow_q3 0.55504108664085595326e-1
#define _pow_q4 0.96181290595172416964e-2
#define _pow_q5 0.13333541313585784703e-2
#define _pow_q6 0.15400290440989764601e-3
#define _pow_q7 0.14928852680595608186e-4
        z = ((((((_pow_q7*w2 + _pow_q6)*w2 + _pow_q5)*w2 +
                  _pow_q4)*w2 + _pow_q3)*w2 + _pow_q2)*w2 + _pow_q1)*w2;
        z = a1[pdash] + a1[pdash]*z;
        z = frexp(z, &m);
        mdash += m;
#ifdef IBMFLOAT
        if (mdash > 0x3f*4)
        {   errno = ERANGE;
            if (sign) r = -HUGE_VAL;
            else r = HUGE_VAL;
        }
        else if (mdash <= -0x41*4)
        {   errno = ERANGE;
            r = 0.0;
        }
#else
        if (mdash >= 0x7ff-0x3fe)
        {   errno = ERANGE;
            if (sign) r = -HUGE_VAL;
            else r = HUGE_VAL;
        }
        else if (mdash <= -0x3fe)
        {   errno = ERANGE;
            r = 0.0;
        }
#endif
        else
        {   r = ldexp(z, mdash);
            if (sign) r = -r;
        }
    }
    return r;
}

#endif /* HOST_HAS_TRIG */

double atan2(double y, double x)
{
    if (x==0.0 && y==0.0)
    {   errno = EDOM;
        return -HUGE_VAL;
    }
    if (fabs(x) < fabs(y))
    {   if (fabs(x / y)<1.0e-20)
        {   if (y<0.0) return - _pi_2;
            else return _pi_2;
        }
    }
    y = atan(y / x);
    if (x<0.0)
    {   if (y>0.0) y -= _pi_;
        else y += _pi_;
    }
    return y;
}

#undef fabs

double fabs(double x)
{
    if (x<0.0) return -x;
    else return x;
}

double sinh(double x)
{
    int sign;
    double y;
    if (x<0.0) y = -x, sign = 1; else y = x, sign = 0;
    if (y>1.0)
    {
/* _sinh_lnv is REQUIRED to read in as a number with the lower part of   */
/* its floating point representation zero.                               */
#define    _sinh_lnv     0.69316101074218750000          /* ln(v)        */
#define    _sinh_vm2     0.24999308500451499336          /* 1/v^2        */
#define    _sinh_v2m1    0.13830277879601902638e-4       /* (v/2) - 1    */
        double w = y - _sinh_lnv, z, r;
        if (w>_exp_arg_limit)
        {   errno = ERANGE;
            if (sign) return -HUGE_VAL;
            else return HUGE_VAL;
        }
        z = exp(w);   /* should not overflow!                            */
        if (z < 1.0e10) z = z - _sinh_vm2/z;
        r = z + _sinh_v2m1 * z;
        if (sign) return -r;
        else return r;
    }
    else if (y<=1.0e-10) return x;
    else
    {
#define _sinh_p0    -0.35181283430177117881e6
#define _sinh_p1    -0.11563521196851768270e5
#define _sinh_p2    -0.16375798202630751372e3
#define _sinh_p3    -0.78966127417357099479e0
#define _sinh_q0    -0.21108770058106271242e7
#define _sinh_q1     0.36162723109421836460e5
#define _sinh_q2    -0.27773523119650701667e3
#define _sinh_q3     1.0
        double g = x*x;
        double r;
        /* Use a (minimax) rational approximation. See Cody & Waite.     */
        r = ((((_sinh_p3*g + _sinh_p2)*g + _sinh_p1)*g + _sinh_p0)*g) /
             (((g + _sinh_q2)*g + _sinh_q1)*g + _sinh_q0);
        return x + x*r;
    }
}

double cosh(double x)
{
    if (x<0.0) x = -x;
    if (x>1.0)
    {
        x = x - _sinh_lnv;
        if (x>_exp_arg_limit)
        {   errno = ERANGE;
            return HUGE_VAL;
        }
        x = exp(x);   /* the range check above ensures that this does    */
                      /* not overflow.                                   */
        if (x < 1.0e10) x = x + _sinh_vm2/x;
        /* This very final line might JUST overflow even though the call */
        /* to exp is safe and even though _exp_arg_limit is conservative */
        return x + _sinh_v2m1 * x;
    }
/* This second part is satisfactory, even though it is simple!           */
    x = exp(x);
    return 0.5*(x + 1/x);
}

double tanh(double x)
{
/* The first two exits avoid premature overflow as well as needless use  */
/* of the exp() function.                                                */
    int sign;
    if (x>27.0) return 1.0;         /* here exp(2x) dominates 1.0        */
    else if (x<-27.0) return -1.0;
    if (x<0.0) x = -x, sign = 1;
    else sign = 0;
    if (x>0.549306144334054846)     /* ln(3)/2 is crossover point        */
    {   x = exp(2.0*x);
        x = 1.0 - 2.0/(x + 1.0);
        if (sign) return -x;
        else return x;
    }
#define _tanh_p0    -0.16134119023996228053e4
#define _tanh_p1    -0.99225929672236083313e2
#define _tanh_p2    -0.96437492777225469787e0
#define _tanh_q0     0.48402357071988688686e4
#define _tanh_q1     0.22337720718962312926e4
#define _tanh_q2     0.11274474380534949335e3
#define _tanh_q3     1.0
    if (x>1.0e-10)
    {   double y = x*x;
        /* minimax rational approximation                                */
        y = (((_tanh_p2*y + _tanh_p1)*y + _tanh_p0)*y) /
             (((y + _tanh_q2)*y + _tanh_q1)*y + _tanh_q0);
        x = x + x*y;
    }
    if (sign) return -x;
    else return x;
}

double fmod(double x, double y)
{
/* floating point remainder of (x/y) for integral quotient. Remainder    */
/* has same sign as x.                                                   */
    double q, r;
    if (y==0.0)
    {
      errno = EDOM;
      return -HUGE_VAL;
    }
    if (x==0.0) return 0.0;
    if (y < 0.0) y = -y;
    r = modf(x/y, &q);
    r = x - q * y;
/* The next few lines are an ultra-cautious scheme to ensure that the    */
/* result is less than fabs(y) in value and that it has the sign of x.   */
    if (x > 0.0)
    {   while (r >= y) r -= y;
        while (r < 0.0) r += y;
    }
    else
    {   while (r <= -y) r += y;
        while (r > 0.0) r -= y;
    }
    return r;
}

#ifdef IBMFLOAT

double floor(double d)
{
/* round x down to an integer towards minus infinity.                    */
    fp_number x;
    int exponent, mask, exact;
    if (d == 0.0) return 0.0;
    x.d = d;                            /* pun on union type             */
    if ((exponent = x.i.x - 0x40) < 0)
    {   if (x.i.s) return -1.0;
        else return 0.0;
    }
    else if (exponent >= 56/4) return x.d;
    if (exponent >= 24/4)
    {   mask = ((unsigned) 0xffffffff) >> (4*(exponent - 24));
        exact = x.i.mlo & mask;
        x.i.mlo &= ~mask;
    }
    else
    {   mask = 0xfffff >> (4*exponent);
        exact = (x.i.mhi & mask) | x.i.mlo;
        x.i.mhi &= ~mask;
        x.i.mlo = 0;
    }
    if (exact!=0 && x.i.s) return x.d - 1.0;
    else return x.d;
}

double ceil(double d)
{
/* round x up to an integer towards plus infinity.                       */
    fp_number x;
    int exponent, mask, exact;
    if (d == 0.0) return 0.0;
    x.d = d;                            /* pun on union type             */
    if ((exponent = x.i.x - 0x40) < 0)
    {   if (x.i.s) return 0.0;
        else return 1.0;
    }
    else if (exponent >= 56/4) return x.d;
    if (exponent >= 24/4)
    {   mask = ((unsigned) 0xffffffff) >> (4*(exponent - 24));
        exact = x.i.mlo & mask;
        x.i.mlo &= ~mask;
    }
    else
    {   mask = 0xfffff >> (4*exponent);
        exact = (x.i.mhi & mask) | x.i.mlo;
        x.i.mhi &= ~mask;
        x.i.mlo = 0;
    }
    if (exact!=0 && x.i.s==0) return x.d + 1.0;
    else return x.d;
}

double modf(double value, double *iptr)
{
/* splits value into integral part & fraction (both same sign)           */
    fp_number x;
    int exponent, mask;
    if (value == 0.0)
    {   *iptr = 0.0;
        return 0.0;
    }
    x.d = value;
    if ((exponent = x.i.x - 0x40) < 0)
    {   *iptr = 0.0;
        return value;
    }
    else if (exponent >= 56/4)
    {   *iptr = value;
        return 0.0;
    }
    if (exponent >= 24/4)
    {   mask = ((unsigned) 0xffffffff) >> (4*(exponent - 24));
        x.i.mlo &= ~mask;
    }
    else
    {   mask = 0xffffff >> (4*exponent);
        x.i.mhi &= ~mask;
        x.i.mlo = 0;
    }
    *iptr = x.d;
    return value - x.d;
}

#else /* IBMFLOAT */

double floor(double d)
{
/* round x down to an integer towards minus infinity.                    */
    fp_number x;
    int exponent, mask, exact;
    if (d == 0.0) return 0.0;
    x.d = d;                            /* pun on union type             */
    if ((exponent = x.i.x - 0x3ff) < 0)
    {   if (x.i.s) return -1.0;
        else return 0.0;
    }
    else if (exponent >= 52) return x.d;
    if (exponent >= 20)
    {   mask = ((unsigned) 0xffffffff) >> (exponent - 20);
        exact = x.i.mlo & mask;
        x.i.mlo &= ~mask;
    }
    else
    {   mask = 0xfffff >> exponent;
        exact = (x.i.mhi & mask) | x.i.mlo;
        x.i.mhi &= ~mask;
        x.i.mlo = 0;
    }
    if (exact!=0 && x.i.s) return x.d - 1.0;
    else return x.d;
}

double ceil(double d)
{
/* round x up to an integer towards plus infinity.                       */
    fp_number x;
    int exponent, mask, exact;
    if (d == 0.0) return 0.0;
    x.d = d;                            /* pun on union type             */
    if ((exponent = x.i.x - 0x3ff) < 0)
    {   if (x.i.s) return 0.0;
        else return 1.0;
    }
    else if (exponent >= 52) return x.d;
    if (exponent >= 20)
    {   mask = ((unsigned) 0xffffffff) >> (exponent - 20);
        exact = x.i.mlo & mask;
        x.i.mlo &= ~mask;
    }
    else
    {   mask = 0xfffff >> exponent;
        exact = (x.i.mhi & mask) | x.i.mlo;
        x.i.mhi &= ~mask;
        x.i.mlo = 0;
    }
    if (exact!=0 && x.i.s==0) return x.d + 1.0;
    else return x.d;
}

double modf(double value, double *iptr)
{
/* splits value into integral part & fraction (both same sign)           */
    fp_number x;
    int exponent, mask;
    if (value == 0.0)
    {   *iptr = 0.0;
        return 0.0;
    }
    x.d = value;
    if ((exponent = x.i.x - 0x3ff) < 0)
    {   *iptr = 0.0;
        return value;
    }
    else if (exponent >= 52)
    {   *iptr = value;
        return 0.0;
    }
    if (exponent >= 20)
    {   mask = ((unsigned) 0xffffffff) >> (exponent - 20);
        x.i.mlo &= ~mask;
    }
    else
    {   mask = 0xfffff >> exponent;
        x.i.mhi &= ~mask;
        x.i.mlo = 0;
    }
    *iptr = x.d;
    return value - x.d;
}

#endif /* IBMFLOAT */
#endif /* NO_FLOATING_POINT */

/* end of math.c */