1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
/* Copyright 1996 Acorn Computers Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* math.c: ANSI draft (X3J11 May 86) library code, section D.5 */
/* Copyright (C) Codemist Ltd, 1988 */
/* version 0.04b */
/* Nov 87: fix bug in ibm frexp(-ve arg). */
/*
* This version of the code takes the view that whenever there is an
* error a NaN should be handed back (as well as errno getting set). The
* value HUGE_VAL is used, which is not actually a NaN but which will
* often lead to exponent overflow pretty soon if it is used. ACN is
* unclear if this is sensible, and has had a program fall over when
* atan2(0.0, 0.0) handed back HUGE_VAL rather than some less vicious
* value (e.g. 0.0). He can imagine people who expect pow(0.0, 0.0) to
* be 1.0 (or maybe 0.0, but certainly not HUGE_VAL), and who expect
* sin(x) to be <= 1.0 in absolute value regardless of anything. Thus
* the current state is OK if we are being strict, but mey be unfriendly
* in some cases? Thoughts and comments, anybody?
*/
#include "hostsys.h"
#include <limits.h>
#include <errno.h>
/* This file contains code for most of the math routines from <math.h> */
/* On the ARM some of these routines are implemented as floating point */
/* opcodes and as such appear in startup.s */
#ifndef NO_FLOATING_POINT
#include <math.h> /* for forward references */
#ifdef IBMFLOAT
const double __huge_val = 7.2370055773322621e+75;
#else
/* On the ARM, this has moved into the library's static data area */
/* so that it still works with the Shared C Library module. */
/* const double __huge_val = 1.79769313486231571e+308; */
#endif
#ifdef IBMFLOAT
double frexp(d, lvn)
double d; int *lvn;
{
fp_number d1;
int n;
if (d==0.0)
/* I worry a little about signed zeros here. I hope that -0.0 == 0.0 */
{ *lvn = 0;
return 0.0;
}
d1.d = d;
n = 4*(d1.i.x - 0x40); /* excess 64 exponent */
d1.i.x = 0x40;
d = d1.d;
/* Note that the following code works for unnormalised numbers, but */
/* can then take 55 cycles to converge instead of usual 3 max. */
while ((d>=0 ? d : -d) < 0.5) d = d+d, n--;
/* Now d is most definitely normalised. */
*lvn = n;
return d;
}
double ldexp(d, n)
double d; int n;
{
fp_number d1;
int nx;
if (d==0.0) return 0.0; /* special case */
d1.d = d;
nx = d1.i.x + (n & ~3)/4;
n &= 3;
#ifndef DO_NOT_SUPPORT_UNNORMALIZED_NUMBERS
/* The following code gets the msd/expt right for unnormalised nos. */
d1.i.x = 0x40;
d1.d += 0.0; /* i.e. normalise */
nx += d1.i.x - 0x40;
#endif
{ int mhi = d1.i.mhi;
int nx1 = (mhi & 0x00c00000)==0 ?
((mhi & 0x00200000)==0 ? n - 3 : n - 2) :
((mhi & 0x00800000)==0 ? n - 1 : n);
if (nx1 > 0) nx++, n -= 4;
/* That just dealt with the fact that in IBM format the exponent is for */
/* base 16 and so scaling by a power of two can involve a real multiply. */
/* I now know what the true exponent (nx) in the result will be. */
}
if (nx > 0x7f) /* Overflow (maybe do a raise() ?) */
{ d1.i.x = 0x7f;
d1.i.mhi = 0xffffff;
d1.i.mlo = 0xffffffff;
return d1.d;
}
if (nx < 0) /* Deal with underflow/unnormalised */
{ if (nx <= -14) return 0.0;
d1.i.x = 0;
while (nx < 0) d1.d /= 16, nx++; /* de-normalise gracefully */
}
d1.i.x = nx;
{ double d2;
switch (n)
{
case -3:d2 = 0.125; break;
case -2:d2 = 0.25; break;
case -1:d2 = 0.5; break;
default: /* avoid dataflow whinge */
case 0: d2 = 1.0; break;
case 1: d2 = 2.0; break;
case 2: d2 = 4.0; break;
case 3: d2 = 8.0; break;
}
d1.d *= d2;
}
return d1.d;
}
#else /* Here is the IEEE format stuff */
#ifndef DO_NOT_SUPPORT_UNNORMALIZED_NUMBERS
double frexp(d, lvn)
double d; int *lvn;
{
/* This version works even if d starts off as an unnormalized number in */
/* the IEEE sense. But in that special case it will be mighty slow! */
/* By that we mean at most 52 iterations for the smallest number. */
fp_number d1;
int n;
if (d==0.0)
{ *lvn = 0;
return 0.0;
}
d1.d = d;
if ((n = d1.i.x - 0x3fe) == -0x3fe)
{ int flag;
/* Here d1 has zero in its exponent field - this means that the mantissa */
/* is un-normalized. I have to shift it left (at least one bit) until a */
/* suitable nonzero bit appears to go in the implicit-bit place in the */
/* fractional result. For each bit shifted I need to adjust the final */
/* exponent that will be returned. */
/* I have already tested to see if d was zero so the fllowing loop MUST */
/* terminate. */
do
{ flag = d1.i.mhi & 0x00080000;
d1.i.mhi = (d1.i.mhi << 1) | (d1.i.mlo >> 31);
d1.i.mlo = d1.i.mlo << 1;
n--;
} while (flag==0);
}
*lvn = n;
d1.i.x = 0x3fe;
return d1.d;
}
#else /* DO_NOT_SUPPORT_UNNORMALIZED_NUMBERS */
double frexp(d, lvn)
double d; int *lvn;
{
fp_number d1;
if (d==0.0)
{ *lvn = 0;
return 0.0;
}
d1.d = d;
*lvn = d1.i.x - 0x3fe;
d1.i.x = 0x3fe;
return d1.d;
}
#endif /* DO_NOT_SUPPORT_UNNORMALIZED_NUMBERS */
double ldexp(d, n)
double d; int n;
{
fp_number d1;
int nx;
if (d==0.0) return 0.0; /* special case */
d1.d = d;
nx = (int) d1.i.x + n;
if (nx >= 0x7ff)
{ errno = ERANGE;
return HUGE_VAL; /* overflow yields 'infinity' */
}
/* Maybe I should be prepared to generate un-normalized numbers here, or */
/* even deal with input d un-normalized and n positive yielding a proper */
/* result. All that seems like a lot of work and so I will not even try */
/* in this version of the code! */
else if (nx <= 0) return 0.0; /* deal with underflow */
d1.i.x = nx;
return (d1.d);
}
#endif
#ifdef IBMFLOAT
#define _exp_arg_limit 174.673089501106208
#else
#define _exp_arg_limit 709.78271289338397
#endif
/* machine independent code - but beware the 1e-20's */
#define _pi_ 3.14159265358979323846
#define _pi_3 1.04719755119659774615
#define _pi_2 1.57079632679489661923
#define _pi_4 0.78539816339744830962
#define _pi_6 0.52359877559829887038
#define _sqrt_half 0.70710678118654752440
#ifndef HOST_HAS_TRIG
/* The ARM has a load of trig functions etc available as opcodes, so */
/* has no need for these software versions shown here. */
#undef sin
#undef cos
#undef atan
static double _sincos(double x, double y, int sign, int coscase)
{
int n;
double xn, f, g, r;
if (y >= 1.0e9) /* fail if argument is overlarge */
{ errno = EDOM;
return -HUGE_VAL;
}
n = (int) ((y + _pi_2) / _pi_);
xn = (double) n;
if ((n & 1) != 0) sign = -sign;
if (coscase) xn = xn - 0.5;
/* Note that these days C is REQUIRED to observe the brackets used here. */
/* The compiler is NOT allowed to re-associate the additions. */
#ifdef IBMFLOAT
{ double x1 = (double)(int)x;
/* observe that the range check on y assures me that (int)x is OK. */
double x2 = x - x1;
f = ((x1 - xn*3.1416015625) + x2) + xn*8.908910206761537356617e-6;
}
#else
f = (x - xn*3.1416015625) + xn*8.908910206761537356617e-6;
#endif
/* I expect that the absolute value of f is less than pi/2 here */
if (fabs(f) >= 1.e-10)
#define _sincos_r1 -0.16666666666666665052
#define _sincos_r2 0.83333333333331650315e-2
#define _sincos_r3 -0.19841269841201840457e-3
#define _sincos_r4 0.27557319210152756119e-5
#define _sincos_r5 -0.25052106798274584544e-7
#define _sincos_r6 0.16058936490371589114e-9
#define _sincos_r7 -0.76429178068910467734e-12
#define _sincos_r8 0.27204790957888846175e-14
{ g = f*f;
r = ((((((((_sincos_r8) * g + _sincos_r7) * g + _sincos_r6) * g +
_sincos_r5) * g + _sincos_r4) * g + _sincos_r3) * g +
_sincos_r2) * g + _sincos_r1) * g;
f += f*r;
};
if (sign < 0) return -f;
else return f;
}
double sin(double x)
{
if (x < 0.0) return _sincos(-x, -x, -1, 0);
else return _sincos(x, x, 1, 0);
}
double cos(double x)
{
if (x < 0.0) return _sincos(-x, _pi_2 - x, 1, 1);
else return _sincos(x, _pi_2 + x, 1, 1);
}
#ifdef IBMFLOAT
#define _exp_negative_arg_limit -180.218266945585778
#else
/* NB: the following value is a proper limit provided denormalised */
/* values are not being supported. It would need to be changed if they */
/* were to start existing. */
#define _exp_negative_arg_limit -708.39641853226408
#endif
double exp(double x)
{
int n;
double xn, g, z, gp, q, r;
if (x > _exp_arg_limit)
{ errno = ERANGE;
return HUGE_VAL;
}
if (x < _exp_negative_arg_limit) return 0.0;
if (fabs(x) < 1.e-20) return 1.0;
/* In C the cast (int)x truncates towards zero. Here I want to round. */
n = (int)((x >= 0 ? 0.5 : -0.5) + 1.44266950408889634074 * x);
xn = (double)n;
#ifdef IBMFLOAT
{ double x1 = (double)(int)x;
double x2 = x - x1;
g = ((x1 - xn * 0.693359375) + x2) - xn * (-2.1219444005469058277e-4);
}
#else
g = (x - xn * 0.693359375) - xn * (-2.1219444005469058277e-4);
#endif
z = g * g;
#define _exp_p0 0.249999999999999993
#define _exp_p1 0.694360001511792852e-2
#define _exp_p2 0.165203300268279130e-4
#define _exp_q0 0.500000000000000000
#define _exp_q1 0.555538666969001188e-1
#define _exp_q2 0.495862884905441294e-3
gp = ((_exp_p2 * z + _exp_p1) * z + _exp_p0) * g;
q = (_exp_q2 * z + _exp_q1) * z + _exp_q0;
r = 0.5 + gp / (q - gp);
return ldexp(r, n + 1);
}
double log(double x)
{
double f, znum, zden, z, w, r, xn;
int n;
if (x <= 0.0)
{ if (x==0.0)
{ errno = ERANGE;
return -HUGE_VAL;
} else
{ errno = EDOM;
return -HUGE_VAL;
}
}
f = frexp(x, &n);
if (f > _sqrt_half)
{ znum = (f - 0.5) - 0.5;
zden = f * 0.5 + 0.5;
}
else
{ n -= 1;
znum = f - 0.5;
zden = znum * 0.5 + 0.5;
}
z = znum / zden;
w = z * z;
#define _log_a0 -0.64124943423745581147e2
#define _log_a1 0.16383943563021534222e2
#define _log_a2 -0.78956112887491257267e0
#define _log_b0 -0.76949932108494879777e3
#define _log_b1 0.31203222091924532844e3
#define _log_b2 -0.35667977739034646171e2
r = w * ( ((_log_a2 * w + _log_a1) * w + _log_a0) /
(((w + _log_b2) * w + _log_b1) * w + _log_b0) );
r = z + z * r;
xn = (double)n;
return (xn*(-2.121944400546905827679e-4) + r) + xn*(355.0/512.0);
}
double log10(double x)
{
return log(x) * 0.43429448190325182765; /* log10(e) */
}
double sqrt(double x)
{
fp_number f;
double y0;
int n;
if (x <= 0.0)
{ if (x < 0.0) errno = EDOM;
return -HUGE_VAL;
}
f.d = x;
#ifdef IBMFLOAT
n = f.i.x - 0x40;
f.i.x = 0x40;
#else
n = f.i.x - 0x3fe;
f.i.x = 0x3fe;
#endif
{ double fd = f.d;
#ifdef IBMFLOAT
y0 = 0.223607 + 0.894427 * fd;
#else
y0 = 0.41731 + 0.59016 * fd;
#endif
y0 = 0.5 * (y0 + fd/y0);
y0 = 0.5 * (y0 + fd/y0);
y0 = 0.5 * (y0 + fd/y0);
#ifdef IBMFLOAT
#define __EPS 2.2204460492503131e-16
y0 = y0 + (0.5 * (fd/y0 - y0) + __EPS/32.0);
#endif
}
if (n & 1)
{
#ifdef IBMFLOAT
y0 = (y0 + __EPS/8.0) * 0.25;
#else
y0 *= _sqrt_half;
#endif
n += 1;
}
n /= 2;
f.d = y0;
f.i.x += n;
return f.d;
}
double _tancot(double x, int iflag)
{
int n;
double f, g, xnum, xden, y, xn;
y = fabs(x);
if (y >= 1.0e9) /* fail if argument is overlarge */
{ errno = EDOM;
return -HUGE_VAL;
}
n = (int) ((2.0 * y + _pi_2) / _pi_);
if (x < 0) n = - n;
xn = (double) n;
#ifdef IBMFLOAT
{ double x1 = (double)(int)x;
double x2 = x - x1;
f = ((x1 - xn*1.57080078125) + x2) + xn*4.454455103380768678308e-6;
}
#else
f = (x - xn*1.57080078125) + xn*4.454455103380768678308e-6;
#endif
if (fabs(f) > 1.e-10)
{ g = f * f;
#define _tan_p1 -0.13338350006421960681
#define _tan_p2 0.34248878235890589960e-2
#define _tan_p3 -0.17861707342254426711e-4
#define _tan_q0 1.00000000000000000000
#define _tan_q1 -0.46671683339755294240
#define _tan_q2 0.25663832289440112864e-1
#define _tan_q3 -0.31181531907010027307e-3
#define _tan_q4 0.49819433993786512270e-6
xnum = ((_tan_p3*g + _tan_p2)*g + _tan_p1)*g*f + f;
xden = (((_tan_q4*g + _tan_q3)*g + _tan_q2)*g + _tan_q1)*g + _tan_q0;
}
else
{ xnum = f;
xden = 1.0;
}
/* It is probable that overflow can never occur here, since floating */
/* point values fall about or more 1.e-16 apart near singularities */
/* of the tangent function. */
if (iflag==0)
{ if ((n & 1) == 0) return xnum / xden;
else return - xden / xnum;
}
else
{ if ((n & 1) == 0) return xden / xnum;
else return - xnum / xden;
}
}
double tan(double x)
{
return _tancot(x, 0);
}
double _cot(double x) /* Not specified by ANSI hence the funny name */
{
if (fabs(x) < 1.0/HUGE_VAL)
{ errno = ERANGE;
if (x < 0.0) return -HUGE_VAL;
else return HUGE_VAL;
}
return _tancot(x, 1);
}
double atan(double x)
{
int n;
double f;
const static double a[4] = { 0.0, _pi_6, _pi_2, _pi_3 };
f = fabs(x);
if (f > 1.0)
{ f = 1.0 / f;
n = 2;
}
else n = 0;
#define _two_minus_root_three 0.26794919243112270647
#define _sqrt_three 1.73205080756887729353
#define _sqrt_three_minus_one 0.73205080756887729353
if (f > _two_minus_root_three)
{ f = (((_sqrt_three_minus_one*f - 0.5) - 0.5) + f) / (_sqrt_three + f);
n++;
}
if (fabs(f) > 1.e-10)
{ double g = f * f;
double r;
#define _atan_p0 -0.13688768894191926929e2
#define _atan_p1 -0.20505855195861651981e2
#define _atan_p2 -0.84946240351320683534e1
#define _atan_p3 -0.83758299368150059274
#define _atan_q0 0.41066306682575781263e2
#define _atan_q1 0.86157349597130242515e2
#define _atan_q2 0.59578436142597344465e2
#define _atan_q3 0.15024001160028576121e2
r = ((((_atan_p3*g + _atan_p2)*g + _atan_p1)*g + _atan_p0)*g) /
((((g + _atan_q3)*g + _atan_q2)*g + _atan_q1)*g + _atan_q0);
f = f + f * r;
}
if (n > 1) f = -f;
f = f + a[n];
if (x < 0) return -f;
else return f;
}
double _asinacos(double x, int flag)
{
int i;
double y, g, r;
const static double a[2] = {0.0, _pi_4 };
const static double b[2] = {_pi_2, _pi_4 };
y = fabs(x);
if (y < 1.e-10) i = flag;
else
{ if (y > 0.5)
{ i = 1 - flag;
if (y > 1.0)
{ errno = EDOM;
return -HUGE_VAL;
}
g = ((0.5 - y) + 0.5) * 0.5;
y = -2.0 * sqrt(g);
}
else
{ i = flag;
g = y * y;
}
#define _asin_p1 -0.27368494524164255994e2
#define _asin_p2 0.57208227877891731407e2
#define _asin_p3 -0.39688862997504877339e2
#define _asin_p4 0.10152522233806463645e2
#define _asin_p5 -0.69674573447350646411e0
#define _asin_q0 -0.16421096714498560795e3
#define _asin_q1 0.41714430248260412556e3
#define _asin_q2 -0.38186303361750149284e3
#define _asin_q3 0.15095270841030604719e3
#define _asin_q4 -0.23823859153670238830e2
r = (((((_asin_p5*g + _asin_p4)*g + _asin_p3)*g +
_asin_p2)*g + _asin_p1)*g) /
(((((g + _asin_q4)*g + _asin_q3)*g +
_asin_q2)*g + _asin_q1)*g + _asin_q0);
y = y + y*r;
}
if (flag==0)
{ y = (a[i] + y) + a[i];
if (x<0) y = -y;
}
else if (x < 0) y = (b[i] + y) + b[i];
else y = (a[i] - y) + a[i];
return y;
}
double asin(double x)
{
return _asinacos(x, 0);
}
double acos(double x)
{
return _asinacos(x, 1);
}
double pow(double x, double y)
{
int sign = 0, m, p, i, mdash, pdash;
double g, r, z, v, u1, u2;
/* The table a1[] contains properly rounded values for 2**(i/16), and */
/* a2[] contains differences between the true values of 2**(i/16) and */
/* the a1[] values for odd i. */
#ifdef IBMFLOAT
const static double a1[17] = {
/* It is painfully important that the following 17 floating point */
/* numbers are read in to yield the quantities shown on the right. */
1.000000000000000000, /* 41100000:00000000 */
0.957603280698573644, /* 40f5257d:152486cc */
0.917004043204671229, /* 40eac0c6:e7dd2439 */
0.878126080186649740, /* 40e0ccde:ec2a94e1 */
0.840896415253714543, /* 40d744fc:cad69d6b */
0.805245165974627155, /* 40ce248c:151f8481 */
0.771105412703970413, /* 40c5672a:115506db */
0.738413072969749659, /* 40bd08a3:9f580c37 */
0.707106781186547531, /* 40b504f3:33f9de65 */
0.677127773468446367, /* 40ad583e:ea42a14b */
0.648419777325504834, /* 40a5fed6:a9b15139 */
0.620928906036742028, /* 409ef532:6091a112 */
0.594603557501360527, /* 409837f0:518db8a9 */
0.569394317378345823, /* 4091c3d3:73ab11c3 */
0.545253866332628830, /* 408b95c1:e3ea8bd7 */
0.522136891213706919, /* 4085aac3:67cc487b */
0.500000000000000000 /* 40800000:00000000 */
};
const static double a2[8] = {
2.4114209503420287e-18,
9.2291566937243078e-19,
-1.5241915231122319e-18,
-3.5421849765286817e-18,
-3.1286215245415074e-18,
-4.4654376565694489e-18,
2.9305146686217562e-18,
1.1260851040933474e-18
};
#else /* IEEE format */
const static double a1[17] = {
/* It is painfully important that the following 17 floating point */
/* numbers are read in to yield the quantities shown on the right. */
1.0, /* 3ff00000:00000000 */
0.9576032806985737, /* 3feea4af:a2a490da */
0.91700404320467121, /* 3fed5818:dcfba487 */
0.87812608018664973, /* 3fec199b:dd85529c */
0.8408964152537145, /* 3feae89f:995ad3ad */
0.80524516597462714, /* 3fe9c491:82a3f090 */
0.77110541270397037, /* 3fe8ace5:422aa0db */
0.73841307296974967, /* 3fe7a114:73eb0187 */
0.70710678118654757, /* 3fe6a09e:667f3bcd */
0.67712777346844632, /* 3fe5ab07:dd485429 */
0.64841977732550482, /* 3fe4bfda:d5362a27 */
0.620928906036742, /* 3fe3dea6:4c123422 */
0.59460355750136051, /* 3fe306fe:0a31b715 */
0.56939431737834578, /* 3fe2387a:6e756238 */
0.54525386633262884, /* 3fe172b8:3c7d517b */
0.52213689121370688, /* 3fe0b558:6cf9890f */
0.5 /* 3fe00000:00000000 */
};
const static double a2[8] = {
-5.3099730280915798e-17,
1.4800703477186887e-17,
1.2353596284702225e-17,
-1.7419972784343138e-17,
3.8504741898901863e-17,
2.3290137959059465e-17,
4.4563878092065126e-17,
4.2759448527536718e-17
};
#endif
if (y == 1.0) return x;
if (x <= 0.0)
{ int ny;
if (x==0.0)
{ if (y <= 0.0)
{ errno = EDOM;
if (y==0.0) return 1.0;
return -HUGE_VAL;
}
return 0.0;
}
if (y < (double)INT_MIN || y > (double)INT_MAX ||
(double)(ny = (int)y) != y)
{ errno = EDOM;
return -HUGE_VAL;
}
/* Here y is an integer and x is negative. */
x = -x;
sign = (ny & 1);
}
if (y == 2.0 && x < 1.e20) return x*x; /* special case. */
g = frexp(x, &m);
p = 0;
if (g <= a1[8]) p = 8;
if (g <= a1[p+4]) p += 4;
if (g <= a1[p+2]) p += 2;
z = ((g - a1[p+1]) - a2[p/2]) / (0.5*g + 0.5*a1[p+1]);
/* Expect abs(z) <= 0.044 here */
v = z * z;
#define _pow_p1 0.83333333333333211405e-1
#define _pow_p2 0.12500000000503799174e-1
#define _pow_p3 0.22321421285924258967e-2
#define _pow_p4 0.43445775672163119635e-3
r = (((_pow_p4*v + _pow_p3)*v + _pow_p2)*v + _pow_p1)*v*z;
#define _pow_k 0.44269504088896340736
r = r + _pow_k * r;
u2 = (r + z * _pow_k) + z;
#define _reduce(v) ((double)(int)(16.0*(v))*0.0625)
u1 = (double)(16*m-p-1) * 0.0625;
{ double y1 = _reduce(y);
double y2 = y - y1;
double w = u2*y + u1*y2;
double w1 = _reduce(w);
double w2 = w - w1;
int iw1;
w = w1 + u1*y1;
w1 = _reduce(w);
w2 = w2 + (w - w1);
w = _reduce(w2);
iw1 = (int)(16.0*(w1+w));
w2 = w2 - w;
/* The following values have been determined experimentally, buth their */
/* values are not very critical. */
#ifdef IBMFLOAT
# define _negative_pow_limit -4160
#else
# define _negative_pow_limit -16352
#endif
if (iw1 < _negative_pow_limit)
{ errno = ERANGE; /* Underflow certain */
return 0.0;
}
if (w2 > 0.0)
{ iw1 += 1;
w2 -= 0.0625;
}
if (iw1 < 0) i = 0;
else i = 1;
mdash = iw1/16 + i;
pdash = 16*mdash - iw1;
#define _pow_q1 0.69314718055994529629
#define _pow_q2 0.24022650695909537056
#define _pow_q3 0.55504108664085595326e-1
#define _pow_q4 0.96181290595172416964e-2
#define _pow_q5 0.13333541313585784703e-2
#define _pow_q6 0.15400290440989764601e-3
#define _pow_q7 0.14928852680595608186e-4
z = ((((((_pow_q7*w2 + _pow_q6)*w2 + _pow_q5)*w2 +
_pow_q4)*w2 + _pow_q3)*w2 + _pow_q2)*w2 + _pow_q1)*w2;
z = a1[pdash] + a1[pdash]*z;
z = frexp(z, &m);
mdash += m;
#ifdef IBMFLOAT
if (mdash > 0x3f*4)
{ errno = ERANGE;
if (sign) r = -HUGE_VAL;
else r = HUGE_VAL;
}
else if (mdash <= -0x41*4)
{ errno = ERANGE;
r = 0.0;
}
#else
if (mdash >= 0x7ff-0x3fe)
{ errno = ERANGE;
if (sign) r = -HUGE_VAL;
else r = HUGE_VAL;
}
else if (mdash <= -0x3fe)
{ errno = ERANGE;
r = 0.0;
}
#endif
else
{ r = ldexp(z, mdash);
if (sign) r = -r;
}
}
return r;
}
#endif /* HOST_HAS_TRIG */
double atan2(double y, double x)
{
if (x==0.0 && y==0.0)
{ errno = EDOM;
return -HUGE_VAL;
}
if (fabs(x) < fabs(y))
{ if (fabs(x / y)<1.0e-20)
{ if (y<0.0) return - _pi_2;
else return _pi_2;
}
}
y = atan(y / x);
if (x<0.0)
{ if (y>0.0) y -= _pi_;
else y += _pi_;
}
return y;
}
#undef fabs
double fabs(double x)
{
if (x<0.0) return -x;
else return x;
}
double sinh(double x)
{
int sign;
double y;
if (x<0.0) y = -x, sign = 1; else y = x, sign = 0;
if (y>1.0)
{
/* _sinh_lnv is REQUIRED to read in as a number with the lower part of */
/* its floating point representation zero. */
#define _sinh_lnv 0.69316101074218750000 /* ln(v) */
#define _sinh_vm2 0.24999308500451499336 /* 1/v^2 */
#define _sinh_v2m1 0.13830277879601902638e-4 /* (v/2) - 1 */
double w = y - _sinh_lnv, z, r;
if (w>_exp_arg_limit)
{ errno = ERANGE;
if (sign) return -HUGE_VAL;
else return HUGE_VAL;
}
z = exp(w); /* should not overflow! */
if (z < 1.0e10) z = z - _sinh_vm2/z;
r = z + _sinh_v2m1 * z;
if (sign) return -r;
else return r;
}
else if (y<=1.0e-10) return x;
else
{
#define _sinh_p0 -0.35181283430177117881e6
#define _sinh_p1 -0.11563521196851768270e5
#define _sinh_p2 -0.16375798202630751372e3
#define _sinh_p3 -0.78966127417357099479e0
#define _sinh_q0 -0.21108770058106271242e7
#define _sinh_q1 0.36162723109421836460e5
#define _sinh_q2 -0.27773523119650701667e3
#define _sinh_q3 1.0
double g = x*x;
double r;
/* Use a (minimax) rational approximation. See Cody & Waite. */
r = ((((_sinh_p3*g + _sinh_p2)*g + _sinh_p1)*g + _sinh_p0)*g) /
(((g + _sinh_q2)*g + _sinh_q1)*g + _sinh_q0);
return x + x*r;
}
}
double cosh(double x)
{
if (x<0.0) x = -x;
if (x>1.0)
{
x = x - _sinh_lnv;
if (x>_exp_arg_limit)
{ errno = ERANGE;
return HUGE_VAL;
}
x = exp(x); /* the range check above ensures that this does */
/* not overflow. */
if (x < 1.0e10) x = x + _sinh_vm2/x;
/* This very final line might JUST overflow even though the call */
/* to exp is safe and even though _exp_arg_limit is conservative */
return x + _sinh_v2m1 * x;
}
/* This second part is satisfactory, even though it is simple! */
x = exp(x);
return 0.5*(x + 1/x);
}
double tanh(double x)
{
/* The first two exits avoid premature overflow as well as needless use */
/* of the exp() function. */
int sign;
if (x>27.0) return 1.0; /* here exp(2x) dominates 1.0 */
else if (x<-27.0) return -1.0;
if (x<0.0) x = -x, sign = 1;
else sign = 0;
if (x>0.549306144334054846) /* ln(3)/2 is crossover point */
{ x = exp(2.0*x);
x = 1.0 - 2.0/(x + 1.0);
if (sign) return -x;
else return x;
}
#define _tanh_p0 -0.16134119023996228053e4
#define _tanh_p1 -0.99225929672236083313e2
#define _tanh_p2 -0.96437492777225469787e0
#define _tanh_q0 0.48402357071988688686e4
#define _tanh_q1 0.22337720718962312926e4
#define _tanh_q2 0.11274474380534949335e3
#define _tanh_q3 1.0
if (x>1.0e-10)
{ double y = x*x;
/* minimax rational approximation */
y = (((_tanh_p2*y + _tanh_p1)*y + _tanh_p0)*y) /
(((y + _tanh_q2)*y + _tanh_q1)*y + _tanh_q0);
x = x + x*y;
}
if (sign) return -x;
else return x;
}
double fmod(double x, double y)
{
/* floating point remainder of (x/y) for integral quotient. Remainder */
/* has same sign as x. */
double q, r;
if (y==0.0)
{
errno = EDOM;
return -HUGE_VAL;
}
if (x==0.0) return 0.0;
if (y < 0.0) y = -y;
r = modf(x/y, &q);
r = x - q * y;
/* The next few lines are an ultra-cautious scheme to ensure that the */
/* result is less than fabs(y) in value and that it has the sign of x. */
if (x > 0.0)
{ while (r >= y) r -= y;
while (r < 0.0) r += y;
}
else
{ while (r <= -y) r += y;
while (r > 0.0) r -= y;
}
return r;
}
#ifdef IBMFLOAT
double floor(double d)
{
/* round x down to an integer towards minus infinity. */
fp_number x;
int exponent, mask, exact;
if (d == 0.0) return 0.0;
x.d = d; /* pun on union type */
if ((exponent = x.i.x - 0x40) < 0)
{ if (x.i.s) return -1.0;
else return 0.0;
}
else if (exponent >= 56/4) return x.d;
if (exponent >= 24/4)
{ mask = ((unsigned) 0xffffffff) >> (4*(exponent - 24));
exact = x.i.mlo & mask;
x.i.mlo &= ~mask;
}
else
{ mask = 0xfffff >> (4*exponent);
exact = (x.i.mhi & mask) | x.i.mlo;
x.i.mhi &= ~mask;
x.i.mlo = 0;
}
if (exact!=0 && x.i.s) return x.d - 1.0;
else return x.d;
}
double ceil(double d)
{
/* round x up to an integer towards plus infinity. */
fp_number x;
int exponent, mask, exact;
if (d == 0.0) return 0.0;
x.d = d; /* pun on union type */
if ((exponent = x.i.x - 0x40) < 0)
{ if (x.i.s) return 0.0;
else return 1.0;
}
else if (exponent >= 56/4) return x.d;
if (exponent >= 24/4)
{ mask = ((unsigned) 0xffffffff) >> (4*(exponent - 24));
exact = x.i.mlo & mask;
x.i.mlo &= ~mask;
}
else
{ mask = 0xfffff >> (4*exponent);
exact = (x.i.mhi & mask) | x.i.mlo;
x.i.mhi &= ~mask;
x.i.mlo = 0;
}
if (exact!=0 && x.i.s==0) return x.d + 1.0;
else return x.d;
}
double modf(double value, double *iptr)
{
/* splits value into integral part & fraction (both same sign) */
fp_number x;
int exponent, mask;
if (value == 0.0)
{ *iptr = 0.0;
return 0.0;
}
x.d = value;
if ((exponent = x.i.x - 0x40) < 0)
{ *iptr = 0.0;
return value;
}
else if (exponent >= 56/4)
{ *iptr = value;
return 0.0;
}
if (exponent >= 24/4)
{ mask = ((unsigned) 0xffffffff) >> (4*(exponent - 24));
x.i.mlo &= ~mask;
}
else
{ mask = 0xffffff >> (4*exponent);
x.i.mhi &= ~mask;
x.i.mlo = 0;
}
*iptr = x.d;
return value - x.d;
}
#else /* IBMFLOAT */
double floor(double d)
{
/* round x down to an integer towards minus infinity. */
fp_number x;
int exponent, mask, exact;
if (d == 0.0) return 0.0;
x.d = d; /* pun on union type */
if ((exponent = x.i.x - 0x3ff) < 0)
{ if (x.i.s) return -1.0;
else return 0.0;
}
else if (exponent >= 52) return x.d;
if (exponent >= 20)
{ mask = ((unsigned) 0xffffffff) >> (exponent - 20);
exact = x.i.mlo & mask;
x.i.mlo &= ~mask;
}
else
{ mask = 0xfffff >> exponent;
exact = (x.i.mhi & mask) | x.i.mlo;
x.i.mhi &= ~mask;
x.i.mlo = 0;
}
if (exact!=0 && x.i.s) return x.d - 1.0;
else return x.d;
}
double ceil(double d)
{
/* round x up to an integer towards plus infinity. */
fp_number x;
int exponent, mask, exact;
if (d == 0.0) return 0.0;
x.d = d; /* pun on union type */
if ((exponent = x.i.x - 0x3ff) < 0)
{ if (x.i.s) return 0.0;
else return 1.0;
}
else if (exponent >= 52) return x.d;
if (exponent >= 20)
{ mask = ((unsigned) 0xffffffff) >> (exponent - 20);
exact = x.i.mlo & mask;
x.i.mlo &= ~mask;
}
else
{ mask = 0xfffff >> exponent;
exact = (x.i.mhi & mask) | x.i.mlo;
x.i.mhi &= ~mask;
x.i.mlo = 0;
}
if (exact!=0 && x.i.s==0) return x.d + 1.0;
else return x.d;
}
double modf(double value, double *iptr)
{
/* splits value into integral part & fraction (both same sign) */
fp_number x;
int exponent, mask;
if (value == 0.0)
{ *iptr = 0.0;
return 0.0;
}
x.d = value;
if ((exponent = x.i.x - 0x3ff) < 0)
{ *iptr = 0.0;
return value;
}
else if (exponent >= 52)
{ *iptr = value;
return 0.0;
}
if (exponent >= 20)
{ mask = ((unsigned) 0xffffffff) >> (exponent - 20);
x.i.mlo &= ~mask;
}
else
{ mask = 0xfffff >> exponent;
x.i.mhi &= ~mask;
x.i.mlo = 0;
}
*iptr = x.d;
return value - x.d;
}
#endif /* IBMFLOAT */
#endif /* NO_FLOATING_POINT */
/* end of math.c */