Module 25.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
; 
; Copyright(c)2010, RISC OS Open Ltd
; Allrightsreserved.
; 
; Redistribution and use in source and binary forms, with or without
; modification, are permitted provided that the following conditions are met: 
;     * Redistributions of source code must retain the above copyright
;       notice, this list of conditions and the following disclaimer.
;     * Redistributions in binary form must reproduce the above copyright
;       notice, this list of conditions and the following disclaimer in the
;       documentation and/or other materials provided with the distribution.
;     * Neither the name of RISC OS Open Ltd nor the names of its contributors
;       may be used to endorse or promote products derived from this software
;       without specific prior written permission.
; 
; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
; AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
; IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
; ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
; LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
; CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
; SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
; INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
; CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
; ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
; POSSIBILITY OF SUCH DAMAGE.
; 

        AREA    |!!!ModuleHeader|, CODE, READONLY, PIC

Module_BaseAddr
        &       0
        &       InitModule - Module_BaseAddr
        &       KillModule - Module_BaseAddr
        &       0
        &       ModuleTitle - Module_BaseAddr
        &       HelpString - Module_BaseAddr
        &       0
        &       VFPSupportSWI_Base
        &       SWIEntry - Module_BaseAddr
        &       SWINameTable - Module_BaseAddr
        &       0
 [ International_Help <> 0
        DCD     MessageFilename - Module_BaseAddr
 |
        DCD     0
 ]
        &       ModuleFlags - Module_BaseAddr

HelpString
        =       "VFPSupport", 9, "$Module_MajorVersion ($Module_Date)"
        [       Module_MinorVersion <> ""
        =       " $Module_MinorVersion"
        ]
        =       0
ModuleTitle
SWINameTable
        =       "VFPSupport", 0
        =       "CheckContext", 0
        =       "CreateContext", 0
        =       "DestroyContext", 0
        =       "ChangeContext", 0
        =       "ExamineContext", 0
        =       "FastAPI", 0
        =       "ActiveContext", 0
        =       "Version", 0
        =       "Features", 0
        =       0
        ALIGN
        
ModuleFlags
        &       ModuleFlag_32bit

; Workspace

                      ^ 0, wp
MessageFile_Block     # 16
MessageFile_Open      # 4
ActiveContext         # 4 ; Context that's actually active
LazyContext           # 4 ; Context awaiting lazy activation (==ActiveContext if none)
NumVFPRegs            # 1 ; Number of doubleword regs available on this hardware
ARMVersion            # 1 ; ARM architecture version from MIDR. <7=ARMv5, 7=ARMv6, &F=ARMv7
VFPVersion            # 1 ; VFP subarchitecture field from FPSID
CPEnabledFlag         # 1 ; Nonzero if CP access is enabled
OldHandler            # 4 ; Original undefined instruction handler
UndefinedHandler      # 4 ; Undefined instruction handler code
LazyHandler           # 8*4 ; Code to call the lazy handler
ChangeContext         # 4 ; Address of SWI_ChangeContext
CurrentRoutine        # 4 ; OldHandler or LazyHandler
SoftFPSID             # 4 ; FPSID
SoftMVFR0             # 4 ; MVFR0
SoftMVFR1             # 4 ; MVFR1
                      
WSSize                * :INDEX: @

; Undefined instruction handler code - gets copied into workspace
UndefinedHandlerTemplate
        LDR     pc, UndefinedHandlerTemplateEnd+4 ; Branch to address in CurrentRoutine
        SUB     lr, lr, #4 ; LazyHandler starts here
        STMDB   r13!,{r0-r1,wp,lr}
        ADR     wp, UndefinedHandlerTemplate-:INDEX:UndefinedHandler ; Get wp
        MOV     r1, #0
        LDR     r0, LazyContext
        MOV     lr, pc
        LDR     pc, ChangeContext ; Reuse main code for simplicity
        LDMIA   r13!,{r0-r1,wp,pc}^ ; Restart aborting instruction
UndefinedHandlerTemplateEnd

        ASSERT  LazyHandler-UndefinedHandler+?LazyHandler = UndefinedHandlerTemplateEnd-UndefinedHandlerTemplate
        ASSERT  CurrentRoutine-UndefinedHandler=UndefinedHandlerTemplateEnd-UndefinedHandlerTemplate+4

; Module code

InitModule
        Entry   "r7-r11"
 [ standalone
        ADRL    R0,ResourceFSFiles
        SWI     XResourceFS_RegisterFiles
 ]
        MOV     r0, #ModHandReason_Claim
        LDR     r3, =WSSize
        SWI     XOS_Module
        BVS     %FT20
        STR     r2, [r12]
        MOV     r12, r2

        MOV     r0, #0
10      SUBS    r3, r3, #4
        STR     r0, [r12, r3]
        BNE     %BT10

        BL      CheckHardware

        BLVC    InstallHandler

20
        EXIT

CheckHardware
        Push    "lr"
        ; Check for any VFP hardware
        ; First step is to check what ARM architecture we're on
        MRC     p15,0,r0,c0,c0,0 ; read main id register
        ANDS    r1, r0, #&F000
        TEQNE   r1, #&7000
        BEQ     NoVFP ; ARM7 or below
        AND     r0, r0, #&F0000
        CMP     r0, #&30000
        BLT     NoVFP ; pre ARMv5
        MOV     r0, r0, LSR #16
        STRB    r0, ARMVersion

        ; Interrupts off for the remainder of the tests
        MRS     r1, CPSR
        ORR     r2, r1, #I32_bit
        MSR     CPSR_c, r2

        CMP     r0, #&7
        BLT     IsARMv5
        ; ARMv6 and above have the coprocessor access control register, which allows us to poll for CP presence
        MRC     p15,0,r2,c1,c0,2 ; read CPACR
        ORR     r3, r2, #&F<<20
        MCR     p15,0,r3,c1,c0,2
        MRC     p15,0,r3,c1,c0,2 ; read it back to get status
        AND     r4, r3, #&F<<20
        CMP     r4, #&F<<20
        MCRNE   p15,0,r2,c1,c0,2 ; restore original CPACR
        BNE     NoVFP_v6v7
        ; VFP coprocessors exist and are now enabled, read FPSID
        myISB   ,r4 ; ISB to ensure that the coprocessors really are enabled
        myVMRS  ,r4, FPSID
        B       GotFPSID

IsARMv5
        ; No CPACR on ARMv5, so only way we can test for VFP is to try reading FPSID and seeing if we trigger an abort
        ; TODO - There are some extra things, e.g. ARMv5 CPACR as found on XScale
        Push    "r1-r2"
        LDR     r0, =&101
        ADR     r1, ARMv5Und
        SWI     XOS_ClaimProcessorVector
        Pull    "r1-r2",VS
        MSRVS   CPSR_c, r1
        Pull    "pc",VS

        MOV     r5, #0
        myVMRS  ,r4, FPSID

        MOV     r0, #1
        ADR     r2, ARMv5Und
        SWI     XOS_ClaimProcessorVector
        Pull    "r1-r2"
        MSRVS   CPSR_c, r1
        Pull    "pc",VS
        ; r5 will be nonzero if we aborted
        CMP     r5, #0
        LDREQB  r0, ARMVersion
        BEQ     GotFPSID
NoVFP_v6v7
        MSR     CPSR_c, r1 ; restore interrupts
NoVFP
        ADRL    r0, ErrorBlock_NoVFP
        B       ReturnError_Stacked

ARMv5Und
        MOV     r5, #1
        MOVS    pc, lr

GotFPSID
        ; r0 = ARM version
        ; r1 = old PSR
        ; r2 = old CPACR if >ARMv5
        ; r4 = FPSID
        TST     r4, #1:SHL:23 ; Is the software bit set?
        BNE     BadVFP
        ; The FPSID format has changed a bit between ARMv5, v6 and v7
        CMP     r0, #&7
        BLT     CheckFPSIDv5
        BEQ     CheckFPSIDv6
        ; v7 version. Must be VFPv3 or above to be valid, but we currently don't allow anything other than vanilla VFPv3 with null subarchitecture due to lack of support code
        AND     r3, r4, #&7F0000
        CMP     r3, #&30000
        BNE     BadVFP
        B       GoodVFP
CheckFPSIDv5 ; TODO
CheckFPSIDv6 ; TODO
BadVFP
        ; Restore CPACR if ARMv6+
        CMP     r0, #&7
        MCRGE   p15,0,r2,c1,c0,2
        myISB   GE,r0 ; Deal with pipelined CP15 ops on ARMv6+. TODO - ARMv5
        ; Restore interrupts
        MSR     CPSR_c, R1
        ADRL    r0, ErrorBlock_BadVFP
        B       ReturnError_Stacked
GoodVFP
        ; r0 = ARM version
        ; r1 = old PSR
        ; r2 = old CPACR if >ARMv5
        ; r3 = FPSID subarchitecture field
        ; r4 = FPSID
        ; Read MVFR0/1 if they're available
        CMP     r3, #&2<<16
        BLT     %FT10
        myVMRS  ,r5,MVFR0
        myVMRS  ,r6,MVFR1
10
        ; Done for now, make sure VFP access is disabled
        ; For the moment we just disable access via the FPEXC.EN bit. This will disable everything except VMSR & VMRS from privileged modes
        MOV     r7, #0
        myVMSR  ,FPEXC, r7
        ; Restore interrupts
        MSR     CPSR_c, R1
        ; Store our results
        ; TODO - Calculate fake MVFR0/MVFR1 values for pre-VFPv3
        MOV     r3, r3, LSR #16
        STRB    r3, VFPVersion
        STR     r4, SoftFPSID
        STR     r5, SoftMVFR0
        STR     r6, SoftMVFR1
        ; Work out how many registers there are
        ; Assumes we've faked up MVFR0!
        AND     r5, r5, #&F
        CMP     r5, #2
        MOVEQ   r3, #32
        MOVNE   r3, #16
        STRB    r3, NumVFPRegs
        Pull    "pc"

InstallHandler
        Entry
        ; Copy the handler code over
        ADR     r0, UndefinedHandlerTemplate
        ADR     r1, UndefinedHandler
        ASSERT  UndefinedHandlerTemplateEnd-UndefinedHandlerTemplate = 9*4
        LDMIA   r0, {r2-r10}
        ASSERT  ChangeContext = UndefinedHandler+(UndefinedHandlerTemplateEnd-UndefinedHandlerTemplate)
        ADR     r11, SWI_ChangeContext
        STMIA   r1, {r2-r11}
        ORR     r0, r0, #1
        ADD     r2, r1, #UndefinedHandlerTemplateEnd-UndefinedHandlerTemplate
        SWI     XOS_SynchroniseCodeAreas
        ; Install the handler. Interrupts disabled to ensure we don't get caught before we set up CurrentRoutine.
        MRS     r4, CPSR
        ORR     r3, r4, #I32_bit
        MSR     CPSR_c, r3
        LDR     r0, =&101        
        SWI     XOS_ClaimProcessorVector
        STRVC   r1, OldHandler
        STRVC   r1, CurrentRoutine
        MSR     CPSR_c, r4
        EXIT

KillModule
        LDR     wp, [r12]
        MOV     r6, lr

        ; Remove undefined instruction handler
        MOV     r0, #1
        LDR     r1, OldHandler
        ADR     r2, UndefinedHandler
        SWI     XOS_ClaimProcessorVector
        MOVVS   pc, r6 ; Improperly nested handlers

        ; Disable VFP
        BL      DisableCPAccess

        ; TODO - Disable in CPACR as well?

        ; TODO - Free any contexts?

        BL      CloseMessages

 [ standalone
        ADRL    R0,ResourceFSFiles
        SWI     XResourceFS_DeregisterFiles   ; ignore errors
 ]

        CLRV
        MOV     pc, r6

SWIEntry
        LDR     wp, [r12]
        CMP     r11, #(EndOfJumpTable-JumpTable)/4
        ADDLO   pc, pc, r11, LSL #2
        B       UnknownSWI
JumpTable
        B       SWI_CheckContext
        B       SWI_CreateContext
        B       SWI_DestroyContext
        B       SWI_ChangeContext
        B       SWI_ExamineContext
        B       SWI_FastAPI
        B       SWI_ActiveContext
        B       SWI_Version
        B       SWI_Features
EndOfJumpTable

UnknownSWI
        ADRL    r0, ErrorBlock_ModuleBadSWI
        B       ReturnError_LR

SWI_CheckContext
;  in: R0 = flags
;           b0 = user mode flag (0=user mode access not required, 1=user mode access required)
;           other bits reserved, sbz
;      R1 = number of doubleword registers required (1-32)
; out: R0 = required size of context save area
        ; Validate flags & reg count
        CMP     r1,#0
        BEQ     %FT10
        CMP     r0,#1
        LDRLSB  r0,NumVFPRegs
        CMPLS   r1,r0
        MOVLS   r0,#Context_RegDump
        ADDLS   r0,r0,r1,LSL #3
        MSRLS   CPSR_f,#Z_bit ; Clear V while retaining LS state
        MOVLS   pc,lr
10
        ADRL    r0, ErrorBlock_FeatureUnavailable
        B       ReturnError_LR

SWI_CreateContext
;  in: R0 = flags
;           b0 = user mode flag (0=user mode access not required, 1=user mode access required)
;           b31 = activate flag (0=leave context inactive, 1=activate now)
;           other bits reserved, sbz
;      R1 = number of doubleword registers required (1-32)
;      R2 = pointer to word-aligned context save area of the size indicated by VFPSupport_CheckContext, or 0 if VFPSupport is to allocate memory itself
;      R3 = FPSCR value to initialise context with
; out: R0 = context ID
;      R1 = previously active context ID/preserved
        Push    "r0-r3,lr"
        CMP     r2,#0
        BIC     r0,r0,#VFPSupport_Context_Activate
        BNE     %FT10
        BL      SWI_CheckContext
        MOVVC   r3,r0
        MOVVC   r0,#ModHandReason_Claim
        SWIVC   XOS_Module
        ADDVS   sp,sp,#4
        Pull    "r1-r3,pc",VS
        LDR     r0,[sp]
        ORR     r0,r0,#VFPSupport_Context_VFPMemory
        LDR     r3,[sp,#12]
10
        ; Initialise context contents
        ASSERT  Context_Flags = 0
        ASSERT  Context_NumRegs = 4
        ASSERT  Context_FPSCR = 8
        ASSERT  Context_FPEXC = 12
        MOV     lr, #0 ; null FPEXC == no registers to restore
        STMIA   r2,{r0,r1,r3,lr}
        ; Did they want the context activating?
        Pull    "r1" ; Actually R0 on input
        MOV     r0,r2
        CLRV
        TST     r1,#VFPSupport_Context_Activate
        Pull    "r1-r3,pc",EQ
        STR     r0,[sp]
        MOV     r1,#0 ; activate non-lazily
        BL      SWI_ChangeContext
        ; Assumes that ChangeContext won't return an error
        MOV     r1,r0
        Pull    "r0,r2-r3,pc"

SWI_DestroyContext
;  in: R0 = context ID
;      R1 = context ID to activate if R0 was the active context
; out: R0 = context ID that's now active
        Entry   "r1-r4"
        MRS     r4, CPSR
        ORR     r3, r4, #I32_bit
        MSR     CPSR_c, r3
        ; Dereference R0
        ; TODO - Improve this so it doesn't save the context we're about to delete
        ; Would need to make sure ActiveContext, LazyContext, coprocessor access & CurrentRoutine all stay in sync
        MOV     r2, r0
        CMP     r0, r1
        MOVEQ   r1, #0 ; Don't activate R1 if we're destroying it!
        LDR     r0, LazyContext
        CMP     r0, r2
        MOVEQ   r0, r1 ; if dying context is active/lazily active, activate user's R1
        LDRNE   r1, ActiveContext
        CMPNE   r1, r2 ; if dying context is really active, activate LazyContext
        MOVEQ   r1, #0 ; Activate desired context non-lazily
        STREQ   r1, [r2, #Context_NumRegs] ; ChangeContext will attempt to save the context we're deleting. But we can make things a little bit faster by skipping the main FP registers.
        BLEQ    SWI_ChangeContext
        ; Ignore error?
        MSR     CPSR_cf, r4 ; Restore interrupts
        LDR     r1, [r2, #Context_Flags]
        TST     r1, #VFPSupport_Context_VFPMemory
        MOV     r0, #ModHandReason_Free
        SWINE   XOS_Module
        CLRV    ; Ignore error?
        LDR     r0, LazyContext
        EXIT

SWI_ChangeContext
;  in: R0 = context ID to activate
;      R1 = flags
;           b0 = lazy activation (0=activate now, 1=use lazy activation)
;           other bits reserved, sbz
; out: R0 = previously active context ID
; TODO - rewrite to use state machine based around array of function pointers?
; TODO - make use of user mode flag
        Entry   "r1-r4"
        MRS     r4, CPSR
        ORR     r3, r4, #I32_bit
        MSR     CPSR_c, r3
        LDR     r2, LazyContext
        TST     r1, #VFPSupport_ChangeContext_Lazy
        LDR     r1, ActiveContext
        STR     r0, LazyContext
        BEQ     ChangeContext_Now
        ; Lazy activation
        CMP     r2, r0
        BEQ     ChangeContext_Exit_IRQ_R0 ; Already (lazily) active
        CMP     r0, #0
        LDREQ   r0, OldHandler
        BEQ     ChangeContext_Exit_IRQ_R2_SetHandler ; Lazy deactivation - clear CurrentRoutine and disable CP access
        ; Else some form of lazy activation. If r0 is actually active, enable CP access, else disable
        CMP     r0, r1
        ADRNE   r0, LazyHandler
        BNE     ChangeContext_Exit_IRQ_R2_SetHandler ; Enable lazy handler
        BL      EnableCPAccess
        LDR     r1, OldHandler ; Disable lazy handler, it's no longer needed
        STR     r1, CurrentRoutine
        B       ChangeContext_Exit_IRQ_R0
ChangeContext_Now
        ; Nonlazy activation
        ; Start by disabling the lazy handler
        LDR     lr, OldHandler
        CMP     r0, r1
        STR     r0, ActiveContext
        CMPEQ   r0, #0
        STR     lr, CurrentRoutine
        BEQ     ChangeContext_Exit_IRQ_R2_Disable ; We're turning it off and it's already off, so do nothing
        BL      EnableCPAccess
        CMP     r0, r1
        BEQ     ChangeContext_Exit_IRQ_R2_MaybeDisable ; Context is already loaded
        ; Save r1 if necessary
        CMP     r1, #0
        BLNE    SaveContext_R1
        ; Load r0 if necessary
        CMP     r0, #0
        BLNE    LoadContext_R0
ChangeContext_Exit_IRQ_R2_MaybeDisable
        CMP     r0, #0
        BLEQ    DisableCPAccess
ChangeContext_Exit_IRQ_R2
        MOV     r0, r2
ChangeContext_Exit_IRQ_R0
        MSR     CPSR_c, r4
        CLRV
        EXIT

ChangeContext_Exit_IRQ_R2_SetHandler
        STR     r0, CurrentRoutine
ChangeContext_Exit_IRQ_R2_Disable
        BL      DisableCPAccess
        MOV     r0, r2
        MSR     CPSR_c, r4
        CLRV
        EXIT

SWI_ExamineContext
;  in: R0 = context ID
;      R1 = flags
;           b0 = Serialise context
; out: R0 = flags:
;           b0 = User mode flag (0=user mode access not required, 1=user mode access required)
;           b29 = context is awaiting lazy activation (1=yes, 0=no)
;           b30 = context status registers are active (1=active, 0=saved)
;           b31 = memory allocation method (0=user allocated, 1=VFPSupport allocated)
;      R1 = number of doubleword registers (may be greater than number requested upon context creation)
;      R2 = register status. bit n is 1 if doubleword register is active, 0 if saved.
;      R3 = pointer to dump format descriptor block
;      R4 = pointer to context register dump
        CMP     r0, #0
        BNE     %FT10
        ADRL    r0, ErrorBlock_BadContext
        B       ReturnError_LR
10
        TST     r1, #VFPSupport_ExamineContext_Serialise
        BEQ     %FT20
        ; Serialise it the easy way
        ; TODO - Do something a bit more sophisticated!
        Push    "r0-r1,lr"
        LDR     r1, [r0, #Context_NumRegs]
        MOV     r0, #VFPSupport_Context_Activate
        MOV     r2, #0
        MOV     r3, #0
        BL      SWI_CreateContext
        BLVC    SWI_DestroyContext
        ADDVS   sp, sp, #4
        Pull    "pc",VS
        Pull    "r0-r1,lr"
20
        MOV     r4, r0
        ; Check the FPEXC value in the dump as a method of determining which format of descriptor block we should use
        ; This won't work too well if programs use this as a method of inserting fake exceptions!
        LDR     r2, [r0, #Context_FPEXC]
        ASSERT  FPEXC_EX = N_bit
        ASSERT  FPEXC_FP2V = V_bit
        MSR     CPSR_f, r2
        ADRGE   r3, FormatDescriptorBlock_FPINST2 ; EX=1 FP2V=1 (EX=1 enforced by PL check below)
        ADRLT   r3, FormatDescriptorBlock_FPINST ; EX=1 FP2V=0 (EX=1 enforced by PL check below)
        ADRPL   r3, FormatDescriptorBlock_NullSubarch ; EX=0
        ; Compute LazyActivation flag
        LDR     r2, LazyContext
        CMP     r4, r2
        LDR     r0, [r4, #Context_Flags]
        ORREQ   r0, r0, #VFPSupport_Context_LazyActivation
        ; Compute StatusRegsActive flag and R2
        LDR     r2, ActiveContext
        CMP     r4, r2
        BICEQ   r0, r0, #VFPSupport_Context_LazyActivation ; If this context is active, then it shouldn't be waiting for lazy activation
        MOVEQ   r2, #1
        LDR     r1, [r4, #Context_NumRegs]
        MOVNE   r2, #0
        ORREQ   r0, r0, #VFPSupport_Context_StatusRegsActive
        RSBEQ   r2, r2, r2, LSL r1
        CLRV
        MOV     pc, lr
        
FormatDescriptorBlock_FPINST2
        DCD     VFPSupport_Field_FPINST2 + Context_FPINST2<<16
FormatDescriptorBlock_FPINST
        DCD     VFPSupport_Field_FPINST + Context_FPINST<<16
FormatDescriptorBlock_NullSubarch
        DCD     VFPSupport_Field_FPSCR + Context_FPSCR<<16
        DCD     VFPSupport_Field_FPEXC + Context_FPEXC<<16
        DCD     VFPSupport_Field_RegDump + Context_RegDump<<16
        DCD     -1 

SWI_FastAPI
; out: R0 = Workspace pointer to pass in R12
;      R1 = CheckContext function pointer
;      R2 = CreateContext function pointer
;      R3 = DestroyContext function pointer
;      R4 = ChangeContext function pointer
        MOV     r0, wp
        ADR     r1, SWI_CheckContext
        ADR     r2, SWI_CreateContext
        ADR     r3, SWI_DestroyContext
        ADR     r4, SWI_ChangeContext
        CLRV
        MOV     pc, lr

SWI_ActiveContext
; out: R0 = currently active context ID (or ID of context pending lazy activation)
        LDR     r0, LazyContext
        CLRV
        MOV     pc, lr

SWI_Version
; out: R0 = Module version number * 100
        MOV     r0, #Module_Version
        CLRV
        MOV     pc, lr

SWI_Features
; in: R0 = Reason code
        CMP     r0, #(EndOfFeaturesJumpTable-FeaturesJumpTable)/4
        ADDLO   pc, pc, r0, LSL #2
        B       UnknownFeature
FeaturesJumpTable
        B       Feature_SystemRegs
EndOfFeaturesJumpTable

UnknownFeature
        ADRL    r0, ErrorBlock_BadFeature
        B       ReturnError_LR

Feature_SystemRegs
;  in: R0 = 0
; out: R0 = FPSID
;      R1 = MVFR0
;      R2 = MVFR1
        ASSERT SoftMVFR0=SoftFPSID+4
        ASSERT SoftMVFR1=SoftMVFR0+4
        ADR    r0, SoftFPSID
        LDMIA  r0, {r0-r2}
        CLRV
        MOV    pc, lr

EnableCPAccess
        ; Enable VFP CP access
        Entry
        LDRB    lr,CPEnabledFlag
        EORS    lr,lr,#255
        EXIT    EQ
        STRB    lr,CPEnabledFlag
        myVMRS  ,lr,FPEXC
        ORR     lr,lr,#FPEXC_EN
        myVMSR  ,FPEXC,lr
        EXIT

DisableCPAccess
        ; Disable VFP CP access
        Entry
        LDRB    lr,CPEnabledFlag
        EORS    lr,lr,#255
        EXIT    NE
        STRB    lr,CPEnabledFlag
        myVMRS  ,lr,FPEXC
        BIC     lr,lr,#FPEXC_EN
        myVMSR  ,FPEXC,lr
        EXIT

SaveContext_R1
        ; Save active context to R1
        ; This should work with VFPv2/3, not sure about VFPv1
        Entry   "r2-r3"
        myVMRS  ,r2, FPEXC
        ASSERT  FPEXC_EX = N_bit
        ASSERT  FPEXC_FP2V = V_bit
        MSR     CPSR_f, r2
        STR     r2, [r1,#Context_FPEXC]
        BPL     %FT10
        ; Must store FPINST
        myVMRS  ,r2, FPINST
        STR     r2, [r1,#Context_FPINST]
        ; Might need to store FPINST2
        myVMRS  VS,r2, FPINST2
        STRVS   r2, [r1,#Context_FPINST2]
10
        LDR     lr, [r1,#Context_NumRegs]
        myVMRS  ,r2, FPSCR
        ADD     r3, r1, #Context_RegDump
        STR     r2, [r1,#Context_FPSCR]
        ADD     pc, pc, lr, LSL #4
        NOP
        EXIT ; Don't malfunction if the context we're saving has 0 regs. Used by DeleteContext to make things a bit faster.
        NOP
        NOP
        NOP

        ; Generate VSTM jump table
        GBLA    count
count   SETA    1
        WHILE   count < 33
       [ count <= 16
        DCI     &EC830B00 + count*2 ; VSTMIA r3,{D0-Dn}
        EXIT
        NOP
        NOP
       |
        DCI     &ECA30B20 ; VSTMIA r3!,{D0-D15} (we can only STM 16 at once)
        DCI     &ECC30B00 + (count-16)*2 ; VSTMIA r3,{D16-Dn}
        EXIT
        NOP
       ]
count   SETA    count+1
        WEND

LoadContext_R0
        ; Load context from R0
        ; This should work with VFPv2/3, not sure about VFPv1
        Entry   "r2-r3"
        LDR     r2, [r0,#Context_FPEXC]
        ASSERT  FPEXC_EX = N_bit
        ASSERT  FPEXC_FP2V = V_bit
        ASSERT  FPEXC_EN = Z_bit ; EN bit will be clear if there are no data registers to restore (actually, entire FPEXC will be clear)
        MSR     CPSR_f, r2
        myVMSR  EQ,FPEXC, r2 ; Don't write FPEXC if EN isn't set
        BPL     %FT10
        ; Must restore FPINST
        LDR     r2, [r0,#Context_FPINST]
        myVMSR  ,FPINST, r2
        ; Might need to restore FPINST2
        LDRVS   r2, [r0,#Context_FPINST2]
        myVMSR  VS,FPINST2, r2
10
        LDREQ   lr, [r0,#Context_NumRegs]
        LDR     r2, [r0,#Context_FPSCR]
        ADDEQ   r3, r0, #Context_RegDump
        myVMSR  ,FPSCR, r2 ; Will only work on first use of new context if we already have CP access (which we currently will)
        ADDEQ   pc, pc, lr, LSL #4
        ; If we're still here, we need to reset FPEXC to default and load 0 regs
        MOV     r2, #FPEXC_EN
        myVMSR  ,FPEXC, r2
        EXIT
        NOP
        NOP
        
        ; Generate VLDM jump table
        GBLA    count
count   SETA    1
        WHILE   count < 33
       [ count <= 16
        DCI     &EC930B00 + count*2 ; VLDMIA r3,{D0-Dn}
        EXIT
        NOP
        NOP
       |
        DCI     &ECB30B20 ; VLDMIA r3!,{D0-D15} (we can only LDM 16 at once)
        DCI     &ECD30B00 + (count-16)*2 ; VLDMIA r3,{D16-Dn}
        EXIT
        NOP
       ]
count   SETA    count+1
        WEND

        LTORG

        [ standalone
ResourceFSFiles
        ResourceFile    $MergedMsgs, Resources.VFPSupport.Messages
        DCD     0
        ]

        END