Commit 73965c77 authored by ROOL's avatar ROOL 🤖
Browse files

Library update

Detail:
  This is release 2.9.0 direct from ARM, with customisations to ro_config.h/timing.c/entropy_poll.c/net_sockets.c to port to RISC OS.
Admin:
  Submission for TCP/IP bounty.

Version 2.02. Tagged as 'mbedTLS-2_02'
parent 0ca88db0
/* (2.01)
/* (2.02)
*
* This file is automatically maintained by srccommit, do not edit manually.
* Last processed by srccommit version: 1.1.
*
*/
#define Module_MajorVersion_CMHG 2.01
#define Module_MajorVersion_CMHG 2.02
#define Module_MinorVersion_CMHG
#define Module_Date_CMHG 21 Aug 2018
#define Module_MajorVersion "2.01"
#define Module_Version 201
#define Module_MajorVersion "2.02"
#define Module_Version 202
#define Module_MinorVersion ""
#define Module_Date "21 Aug 2018"
......@@ -18,6 +18,6 @@
#define Module_ComponentName "mbedTLS"
#define Module_ComponentPath "mixed/RiscOS/Sources/Lib/mbedTLS"
#define Module_FullVersion "2.01"
#define Module_HelpVersion "2.01 (21 Aug 2018)"
#define Module_LibraryVersionInfo "2:1"
#define Module_FullVersion "2.02"
#define Module_HelpVersion "2.02 (21 Aug 2018)"
#define Module_LibraryVersionInfo "2:2"
......@@ -201,6 +201,8 @@ static const unsigned char FSb[256] =
static const uint32_t FT0[256] = { FT };
#undef V
#if !defined(MBEDTLS_AES_FEWER_TABLES)
#define V(a,b,c,d) 0x##b##c##d##a
static const uint32_t FT1[256] = { FT };
#undef V
......@@ -213,6 +215,8 @@ static const uint32_t FT2[256] = { FT };
static const uint32_t FT3[256] = { FT };
#undef V
#endif /* !MBEDTLS_AES_FEWER_TABLES */
#undef FT
/*
......@@ -328,6 +332,8 @@ static const unsigned char RSb[256] =
static const uint32_t RT0[256] = { RT };
#undef V
#if !defined(MBEDTLS_AES_FEWER_TABLES)
#define V(a,b,c,d) 0x##b##c##d##a
static const uint32_t RT1[256] = { RT };
#undef V
......@@ -340,6 +346,8 @@ static const uint32_t RT2[256] = { RT };
static const uint32_t RT3[256] = { RT };
#undef V
#endif /* !MBEDTLS_AES_FEWER_TABLES */
#undef RT
/*
......@@ -359,18 +367,22 @@ static const uint32_t RCON[10] =
*/
static unsigned char FSb[256];
static uint32_t FT0[256];
#if !defined(MBEDTLS_AES_FEWER_TABLES)
static uint32_t FT1[256];
static uint32_t FT2[256];
static uint32_t FT3[256];
#endif /* !MBEDTLS_AES_FEWER_TABLES */
/*
* Reverse S-box & tables
*/
static unsigned char RSb[256];
static uint32_t RT0[256];
#if !defined(MBEDTLS_AES_FEWER_TABLES)
static uint32_t RT1[256];
static uint32_t RT2[256];
static uint32_t RT3[256];
#endif /* !MBEDTLS_AES_FEWER_TABLES */
/*
* Round constants
......@@ -445,9 +457,11 @@ static void aes_gen_tables( void )
( (uint32_t) x << 16 ) ^
( (uint32_t) z << 24 );
#if !defined(MBEDTLS_AES_FEWER_TABLES)
FT1[i] = ROTL8( FT0[i] );
FT2[i] = ROTL8( FT1[i] );
FT3[i] = ROTL8( FT2[i] );
#endif /* !MBEDTLS_AES_FEWER_TABLES */
x = RSb[i];
......@@ -456,14 +470,48 @@ static void aes_gen_tables( void )
( (uint32_t) MUL( 0x0D, x ) << 16 ) ^
( (uint32_t) MUL( 0x0B, x ) << 24 );
#if !defined(MBEDTLS_AES_FEWER_TABLES)
RT1[i] = ROTL8( RT0[i] );
RT2[i] = ROTL8( RT1[i] );
RT3[i] = ROTL8( RT2[i] );
#endif /* !MBEDTLS_AES_FEWER_TABLES */
}
}
#undef ROTL8
#endif /* MBEDTLS_AES_ROM_TABLES */
#if defined(MBEDTLS_AES_FEWER_TABLES)
#define ROTL8(x) ( (uint32_t)( ( x ) << 8 ) + (uint32_t)( ( x ) >> 24 ) )
#define ROTL16(x) ( (uint32_t)( ( x ) << 16 ) + (uint32_t)( ( x ) >> 16 ) )
#define ROTL24(x) ( (uint32_t)( ( x ) << 24 ) + (uint32_t)( ( x ) >> 8 ) )
#define AES_RT0(idx) RT0[idx]
#define AES_RT1(idx) ROTL8( RT0[idx] )
#define AES_RT2(idx) ROTL16( RT0[idx] )
#define AES_RT3(idx) ROTL24( RT0[idx] )
#define AES_FT0(idx) FT0[idx]
#define AES_FT1(idx) ROTL8( FT0[idx] )
#define AES_FT2(idx) ROTL16( FT0[idx] )
#define AES_FT3(idx) ROTL24( FT0[idx] )
#else /* MBEDTLS_AES_FEWER_TABLES */
#define AES_RT0(idx) RT0[idx]
#define AES_RT1(idx) RT1[idx]
#define AES_RT2(idx) RT2[idx]
#define AES_RT3(idx) RT3[idx]
#define AES_FT0(idx) FT0[idx]
#define AES_FT1(idx) FT1[idx]
#define AES_FT2(idx) FT2[idx]
#define AES_FT3(idx) FT3[idx]
#endif /* MBEDTLS_AES_FEWER_TABLES */
void mbedtls_aes_init( mbedtls_aes_context *ctx )
{
memset( ctx, 0, sizeof( mbedtls_aes_context ) );
......@@ -641,10 +689,10 @@ int mbedtls_aes_setkey_dec( mbedtls_aes_context *ctx, const unsigned char *key,
{
for( j = 0; j < 4; j++, SK++ )
{
*RK++ = RT0[ FSb[ ( *SK ) & 0xFF ] ] ^
RT1[ FSb[ ( *SK >> 8 ) & 0xFF ] ] ^
RT2[ FSb[ ( *SK >> 16 ) & 0xFF ] ] ^
RT3[ FSb[ ( *SK >> 24 ) & 0xFF ] ];
*RK++ = AES_RT0( FSb[ ( *SK ) & 0xFF ] ) ^
AES_RT1( FSb[ ( *SK >> 8 ) & 0xFF ] ) ^
AES_RT2( FSb[ ( *SK >> 16 ) & 0xFF ] ) ^
AES_RT3( FSb[ ( *SK >> 24 ) & 0xFF ] );
}
}
......@@ -660,50 +708,50 @@ exit:
}
#endif /* !MBEDTLS_AES_SETKEY_DEC_ALT */
#define AES_FROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3) \
{ \
X0 = *RK++ ^ FT0[ ( Y0 ) & 0xFF ] ^ \
FT1[ ( Y1 >> 8 ) & 0xFF ] ^ \
FT2[ ( Y2 >> 16 ) & 0xFF ] ^ \
FT3[ ( Y3 >> 24 ) & 0xFF ]; \
\
X1 = *RK++ ^ FT0[ ( Y1 ) & 0xFF ] ^ \
FT1[ ( Y2 >> 8 ) & 0xFF ] ^ \
FT2[ ( Y3 >> 16 ) & 0xFF ] ^ \
FT3[ ( Y0 >> 24 ) & 0xFF ]; \
\
X2 = *RK++ ^ FT0[ ( Y2 ) & 0xFF ] ^ \
FT1[ ( Y3 >> 8 ) & 0xFF ] ^ \
FT2[ ( Y0 >> 16 ) & 0xFF ] ^ \
FT3[ ( Y1 >> 24 ) & 0xFF ]; \
\
X3 = *RK++ ^ FT0[ ( Y3 ) & 0xFF ] ^ \
FT1[ ( Y0 >> 8 ) & 0xFF ] ^ \
FT2[ ( Y1 >> 16 ) & 0xFF ] ^ \
FT3[ ( Y2 >> 24 ) & 0xFF ]; \
#define AES_FROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3) \
{ \
X0 = *RK++ ^ AES_FT0( ( Y0 ) & 0xFF ) ^ \
AES_FT1( ( Y1 >> 8 ) & 0xFF ) ^ \
AES_FT2( ( Y2 >> 16 ) & 0xFF ) ^ \
AES_FT3( ( Y3 >> 24 ) & 0xFF ); \
\
X1 = *RK++ ^ AES_FT0( ( Y1 ) & 0xFF ) ^ \
AES_FT1( ( Y2 >> 8 ) & 0xFF ) ^ \
AES_FT2( ( Y3 >> 16 ) & 0xFF ) ^ \
AES_FT3( ( Y0 >> 24 ) & 0xFF ); \
\
X2 = *RK++ ^ AES_FT0( ( Y2 ) & 0xFF ) ^ \
AES_FT1( ( Y3 >> 8 ) & 0xFF ) ^ \
AES_FT2( ( Y0 >> 16 ) & 0xFF ) ^ \
AES_FT3( ( Y1 >> 24 ) & 0xFF ); \
\
X3 = *RK++ ^ AES_FT0( ( Y3 ) & 0xFF ) ^ \
AES_FT1( ( Y0 >> 8 ) & 0xFF ) ^ \
AES_FT2( ( Y1 >> 16 ) & 0xFF ) ^ \
AES_FT3( ( Y2 >> 24 ) & 0xFF ); \
}
#define AES_RROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3) \
{ \
X0 = *RK++ ^ RT0[ ( Y0 ) & 0xFF ] ^ \
RT1[ ( Y3 >> 8 ) & 0xFF ] ^ \
RT2[ ( Y2 >> 16 ) & 0xFF ] ^ \
RT3[ ( Y1 >> 24 ) & 0xFF ]; \
\
X1 = *RK++ ^ RT0[ ( Y1 ) & 0xFF ] ^ \
RT1[ ( Y0 >> 8 ) & 0xFF ] ^ \
RT2[ ( Y3 >> 16 ) & 0xFF ] ^ \
RT3[ ( Y2 >> 24 ) & 0xFF ]; \
\
X2 = *RK++ ^ RT0[ ( Y2 ) & 0xFF ] ^ \
RT1[ ( Y1 >> 8 ) & 0xFF ] ^ \
RT2[ ( Y0 >> 16 ) & 0xFF ] ^ \
RT3[ ( Y3 >> 24 ) & 0xFF ]; \
\
X3 = *RK++ ^ RT0[ ( Y3 ) & 0xFF ] ^ \
RT1[ ( Y2 >> 8 ) & 0xFF ] ^ \
RT2[ ( Y1 >> 16 ) & 0xFF ] ^ \
RT3[ ( Y0 >> 24 ) & 0xFF ]; \
#define AES_RROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3) \
{ \
X0 = *RK++ ^ AES_RT0( ( Y0 ) & 0xFF ) ^ \
AES_RT1( ( Y3 >> 8 ) & 0xFF ) ^ \
AES_RT2( ( Y2 >> 16 ) & 0xFF ) ^ \
AES_RT3( ( Y1 >> 24 ) & 0xFF ); \
\
X1 = *RK++ ^ AES_RT0( ( Y1 ) & 0xFF ) ^ \
AES_RT1( ( Y0 >> 8 ) & 0xFF ) ^ \
AES_RT2( ( Y3 >> 16 ) & 0xFF ) ^ \
AES_RT3( ( Y2 >> 24 ) & 0xFF ); \
\
X2 = *RK++ ^ AES_RT0( ( Y2 ) & 0xFF ) ^ \
AES_RT1( ( Y1 >> 8 ) & 0xFF ) ^ \
AES_RT2( ( Y0 >> 16 ) & 0xFF ) ^ \
AES_RT3( ( Y3 >> 24 ) & 0xFF ); \
\
X3 = *RK++ ^ AES_RT0( ( Y3 ) & 0xFF ) ^ \
AES_RT1( ( Y2 >> 8 ) & 0xFF ) ^ \
AES_RT2( ( Y1 >> 16 ) & 0xFF ) ^ \
AES_RT3( ( Y0 >> 24 ) & 0xFF ); \
}
/*
......
......@@ -32,6 +32,12 @@
#if defined(MBEDTLS_AESNI_C)
#if defined(__has_feature)
#if __has_feature(memory_sanitizer)
#warning "MBEDTLS_AESNI_C is known to cause spurious error reports with some memory sanitizers as they do not understand the assembly code."
#endif
#endif
#include "mbedtls/aesni.h"
#include <string.h>
......
......@@ -184,7 +184,7 @@ int mbedtls_mpi_shrink( mbedtls_mpi *X, size_t nblimbs )
*/
int mbedtls_mpi_copy( mbedtls_mpi *X, const mbedtls_mpi *Y )
{
int ret;
int ret = 0;
size_t i;
if( X == Y )
......@@ -203,9 +203,15 @@ int mbedtls_mpi_copy( mbedtls_mpi *X, const mbedtls_mpi *Y )
X->s = Y->s;
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i ) );
if( X->n < i )
{
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i ) );
}
else
{
memset( X->p + i, 0, ( X->n - i ) * ciL );
}
memset( X->p, 0, X->n * ciL );
memcpy( X->p, Y->p, i * ciL );
cleanup:
......@@ -963,7 +969,7 @@ static void mpi_sub_hlp( size_t n, mbedtls_mpi_uint *s, mbedtls_mpi_uint *d )
while( c != 0 )
{
z = ( *d < c ); *d -= c;
c = z; i++; d++;
c = z; d++;
}
}
......@@ -1201,8 +1207,8 @@ int mbedtls_mpi_mul_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + j ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
for( i++; j > 0; j-- )
mpi_mul_hlp( i - 1, A->p, X->p + j - 1, B->p[j - 1] );
for( ; j > 0; j-- )
mpi_mul_hlp( i, A->p, X->p + j - 1, B->p[j - 1] );
X->s = A->s * B->s;
......@@ -2188,12 +2194,23 @@ int mbedtls_mpi_is_prime( const mbedtls_mpi *X,
/*
* Prime number generation
*
* If dh_flag is 0 and nbits is at least 1024, then the procedure
* follows the RSA probably-prime generation method of FIPS 186-4.
* NB. FIPS 186-4 only allows the specific bit lengths of 1024 and 1536.
*/
int mbedtls_mpi_gen_prime( mbedtls_mpi *X, size_t nbits, int dh_flag,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng )
{
int ret;
#ifdef MBEDTLS_HAVE_INT64
// ceil(2^63.5)
#define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
#else
// ceil(2^31.5)
#define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
#endif
int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
size_t k, n;
mbedtls_mpi_uint r;
mbedtls_mpi Y;
......@@ -2205,69 +2222,66 @@ int mbedtls_mpi_gen_prime( mbedtls_mpi *X, size_t nbits, int dh_flag,
n = BITS_TO_LIMBS( nbits );
MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( X, n * ciL, f_rng, p_rng ) );
k = mbedtls_mpi_bitlen( X );
if( k > nbits ) MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, k - nbits + 1 ) );
mbedtls_mpi_set_bit( X, nbits-1, 1 );
while( 1 )
{
MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( X, n * ciL, f_rng, p_rng ) );
/* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
if( X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2 ) continue;
X->p[0] |= 1;
k = n * biL;
if( k > nbits ) MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, k - nbits ) );
X->p[0] |= 1;
if( dh_flag == 0 )
{
while( ( ret = mbedtls_mpi_is_prime( X, f_rng, p_rng ) ) != 0 )
if( dh_flag == 0 )
{
ret = mbedtls_mpi_is_prime( X, f_rng, p_rng );
if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
goto cleanup;
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 2 ) );
}
}
else
{
/*
* An necessary condition for Y and X = 2Y + 1 to be prime
* is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
* Make sure it is satisfied, while keeping X = 3 mod 4
*/
else
{
/*
* An necessary condition for Y and X = 2Y + 1 to be prime
* is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
* Make sure it is satisfied, while keeping X = 3 mod 4
*/
X->p[0] |= 2;
X->p[0] |= 2;
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, 3 ) );
if( r == 0 )
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 8 ) );
else if( r == 1 )
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 4 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, 3 ) );
if( r == 0 )
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 8 ) );
else if( r == 1 )
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 4 ) );
/* Set Y = (X-1) / 2, which is X / 2 because X is odd */
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, X ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, 1 ) );
/* Set Y = (X-1) / 2, which is X / 2 because X is odd */
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, X ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, 1 ) );
while( 1 )
{
/*
* First, check small factors for X and Y
* before doing Miller-Rabin on any of them
*/
if( ( ret = mpi_check_small_factors( X ) ) == 0 &&
( ret = mpi_check_small_factors( &Y ) ) == 0 &&
( ret = mpi_miller_rabin( X, f_rng, p_rng ) ) == 0 &&
( ret = mpi_miller_rabin( &Y, f_rng, p_rng ) ) == 0 )
while( 1 )
{
break;
/*
* First, check small factors for X and Y
* before doing Miller-Rabin on any of them
*/
if( ( ret = mpi_check_small_factors( X ) ) == 0 &&
( ret = mpi_check_small_factors( &Y ) ) == 0 &&
( ret = mpi_miller_rabin( X, f_rng, p_rng ) ) == 0 &&
( ret = mpi_miller_rabin( &Y, f_rng, p_rng ) ) == 0 )
goto cleanup;
if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
goto cleanup;
/*
* Next candidates. We want to preserve Y = (X-1) / 2 and
* Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
* so up Y by 6 and X by 12.
*/
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 12 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &Y, &Y, 6 ) );
}
if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
goto cleanup;
/*
* Next candidates. We want to preserve Y = (X-1) / 2 and
* Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
* so up Y by 6 and X by 12.
*/
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 12 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &Y, &Y, 6 ) );
}
}
......
......@@ -325,8 +325,10 @@ int mbedtls_cipher_update( mbedtls_cipher_context_t *ctx, const unsigned char *i
/*
* If there is not enough data for a full block, cache it.
*/
if( ( ctx->operation == MBEDTLS_DECRYPT &&
if( ( ctx->operation == MBEDTLS_DECRYPT && NULL != ctx->add_padding &&
ilen <= block_size - ctx->unprocessed_len ) ||
( ctx->operation == MBEDTLS_DECRYPT && NULL == ctx->add_padding &&
ilen < block_size - ctx->unprocessed_len ) ||
( ctx->operation == MBEDTLS_ENCRYPT &&
ilen < block_size - ctx->unprocessed_len ) )
{
......@@ -372,9 +374,17 @@ int mbedtls_cipher_update( mbedtls_cipher_context_t *ctx, const unsigned char *i
return MBEDTLS_ERR_CIPHER_INVALID_CONTEXT;
}
/* Encryption: only cache partial blocks
* Decryption w/ padding: always keep at least one whole block
* Decryption w/o padding: only cache partial blocks
*/
copy_len = ilen % block_size;
if( copy_len == 0 && ctx->operation == MBEDTLS_DECRYPT )
if( copy_len == 0 &&
ctx->operation == MBEDTLS_DECRYPT &&
NULL != ctx->add_padding)
{
copy_len = block_size;
}
memcpy( ctx->unprocessed_data, &( input[ilen - copy_len] ),
copy_len );
......
......@@ -771,7 +771,7 @@ static int cmac_test_subkeys( int verbose,
int block_size,
int num_tests )
{
int i, ret;
int i, ret = 0;
mbedtls_cipher_context_t ctx;
const mbedtls_cipher_info_t *cipher_info;
unsigned char K1[MBEDTLS_CIPHER_BLKSIZE_MAX];
......@@ -853,7 +853,7 @@ static int cmac_test_wth_cipher( int verbose,
int num_tests )
{
const mbedtls_cipher_info_t *cipher_info;
int i, ret;
int i, ret = 0;
unsigned char output[MBEDTLS_CIPHER_BLKSIZE_MAX];
cipher_info = mbedtls_cipher_info_from_type( cipher_type );
......
......@@ -400,6 +400,9 @@ int mbedtls_ecdsa_read_signature( mbedtls_ecdsa_context *ctx,
&ctx->Q, &r, &s ) ) != 0 )
goto cleanup;
/* At this point we know that the buffer starts with a valid signature.
* Return 0 if the buffer just contains the signature, and a specific
* error code if the valid signature is followed by more data. */
if( p != end )
ret = MBEDTLS_ERR_ECP_SIG_LEN_MISMATCH;
......
......@@ -26,6 +26,7 @@
* GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
* FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
* RFC 4492 for the related TLS structures and constants
* RFC 7748 for the Curve448 and Curve25519 curve definitions
*
* [Curve25519] http://cr.yp.to/ecdh/curve25519-20060209.pdf
*
......@@ -99,7 +100,8 @@ static unsigned long add_count, dbl_count, mul_count;
#define ECP_SHORTWEIERSTRASS
#endif
#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) || \
defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
#define ECP_MONTGOMERY
#endif
......@@ -1852,6 +1854,8 @@ cleanup:
static int ecp_check_pubkey_mx( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt )
{
/* [Curve25519 p. 5] Just check X is the correct number of bytes */
/* Allow any public value, if it's too big then we'll just reduce it mod p
* (RFC 7748 sec. 5 para. 3). */
if( mbedtls_mpi_size( &pt->X ) > ( grp->nbits + 7 ) / 8 )
return( MBEDTLS_ERR_ECP_INVALID_KEY );
......@@ -1887,14 +1891,18 @@ int mbedtls_ecp_check_privkey( const mbedtls_ecp_group *grp, const mbedtls_mpi *
#if defined(ECP_MONTGOMERY)
if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
{
/* see [Curve25519] page 5 */
/* see RFC 7748 sec. 5 para. 5 */
if( mbedtls_mpi_get_bit( d, 0 ) != 0 ||
mbedtls_mpi_get_bit( d, 1 ) != 0 ||
mbedtls_mpi_get_bit( d, 2 ) != 0 ||
mbedtls_mpi_bitlen( d ) - 1 != grp->nbits ) /* mbedtls_mpi_bitlen is one-based! */
return( MBEDTLS_ERR_ECP_INVALID_KEY );
else
return( 0 );
/* see [Curve25519] page 5 */
if( grp->nbits == 254 && mbedtls_mpi_get_bit( d, 2 ) != 0 )
return( MBEDTLS_ERR_ECP_INVALID_KEY );
return( 0 );
}
#endif /* ECP_MONTGOMERY */
#if defined(ECP_SHORTWEIERSTRASS)
......@@ -1941,10 +1949,14 @@ int mbedtls_ecp_gen_keypair_base( mbedtls_ecp_group *grp,
else
MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, grp->nbits, 1 ) );
/* Make sure the last three bits are unset */
/* Make sure the last two bits are unset for Curve448, three bits for
Curve25519 */
MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 0, 0 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 1, 0 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 2, 0 ) );
if( grp->nbits == 254 )
{
MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 2, 0 ) );
}
}
else
#endif /* ECP_MONTGOMERY */
......
......@@ -627,6 +627,9 @@ static int ecp_mod_p521( mbedtls_mpi * );
#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
static int ecp_mod_p255( mbedtls_mpi * );
#endif
#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
static int ecp_mod_p448( mbedtls_mpi * );
#endif
#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
static int ecp_mod_p192k1( mbedtls_mpi * );
#endif
......@@ -670,7 +673,12 @@ static int ecp_use_curve25519( mbedtls_ecp_group *grp )
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 19 ) );
grp->pbits = mbedtls_mpi_bitlen( &grp->P );
/* Y intentionaly not set, since we use x/z coordinates.
/* N = 2^252 + 27742317777372353535851937790883648493 */
MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &grp->N, 16,
"14DEF9DEA2F79CD65812631A5CF5D3ED" ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &grp->N, 252, 1 ) );
/* Y intentionally not set, since we use x/z coordinates.
* This is used as a marker to identify Montgomery curves! */
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.X, 9 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.Z, 1 ) );
......@@ -687,6 +695,52 @@ cleanup:
}
#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
/*
* Specialized function for creating the Curve448 group
*/
static int ecp_use_curve448( mbedtls_ecp_group *grp )
{
mbedtls_mpi Ns;
int ret;
mbedtls_mpi_init( &Ns );
/* Actually ( A + 2 ) / 4 */
MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &grp->A, 16, "98AA" ) );
/* P = 2^448 - 2^224 - 1 */
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->P, 1 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 224 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 1 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 224 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 1 ) );
grp->pbits = mbedtls_mpi_bitlen( &grp->P );