; Copyright 1996 Acorn Computers Ltd ; ; Licensed under the Apache License, Version 2.0 (the "License"); ; you may not use this file except in compliance with the License. ; You may obtain a copy of the License at ; ; http://www.apache.org/licenses/LICENSE-2.0 ; ; Unless required by applicable law or agreed to in writing, software ; distributed under the License is distributed on an "AS IS" BASIS, ; WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ; See the License for the specific language governing permissions and ; limitations under the License. ; ; > ARM600 ; Convert given page flags to the equivalent temp uncacheable L2PT flags ; n.b. temp not used here but included for VMSAv6 compatibility MACRO GetTempUncache $out, $pageflags, $pcbtrans, $temp ASSERT $out <> $pageflags ; For consistency with VMSAv6 version ASSERT $out <> $pcbtrans [ "$temp" <> "" ASSERT $out <> $temp ; For consistency with VMSAv6 version ASSERT $temp <> $pcbtrans ; For consistency with VMSAv6 version ] ASSERT DynAreaFlags_CPBits = 7*XCB_P :SHL: 10 ASSERT DynAreaFlags_NotCacheable = XCB_NC :SHL: 4 ASSERT DynAreaFlags_NotBufferable = XCB_NB :SHL: 4 AND $out, $pageflags, #DynAreaFlags_NotCacheable + DynAreaFlags_NotBufferable ORR $out, $out, #DynAreaFlags_NotCacheable ; treat as temp uncache LDRB $out, [$pcbtrans, $out, LSR #4] ; convert to X, C and B bits for this CPU MEND TempUncache_L2PTMask * L2_X+L2_C+L2_B ; MMU interface file - ARM600 version KEEP ; **************** CAM manipulation utility routines *********************************** ; ************************************************************************************** ; ; BangCamUpdate - Update CAM, MMU for page move, coping with page currently mapped in ; ; mjs Oct 2000 ; reworked to use generic ARM ops (vectored to appropriate routines during boot) ; ; First look in the CamEntries table to find the logical address L this physical page is ; currently allocated to. Then check in the Level 2 page tables to see if page L is currently ; at page R2. If it is, then map page L to be inaccessible, otherwise leave page L alone. ; Then map logical page R3 to physical page R2. ; ; in: r2 = physical page number ; r3 = logical address (2nd copy if doubly mapped area) ; r9 = offset from 1st to 2nd copy of doubly mapped area (either source or dest, but not both) ; r11 = PPL + CB bits ; ; out: r0, r1, r4, r6 corrupted ; r2, r3, r5, r7-r12 preserved ; BangCamUpdate ROUT TST r11, #DynAreaFlags_DoublyMapped ; if moving page to doubly mapped area SUBNE r3, r3, r9 ; then CAM soft copy holds ptr to 1st copy LDR r1, =ZeroPage LDR r1, [r1, #CamEntriesPointer] ADD r1, r1, r2, LSL #CAM_EntrySizeLog2 ; point at cam entry (logaddr, PPL) ASSERT CAM_LogAddr=0 ASSERT CAM_PageFlags=4 LDMIA r1, {r0, r6} ; r0 = current logaddress, r6 = current PPL Push "r0, r6" ; save old logical address, PPL BIC r4, r11, #PageFlags_Unsafe BIC r4, r4, #StickyPageFlags AND r6, r6, #StickyPageFlags ORR r4, r4, r6 STMIA r1, {r3, r4} ; store new address, PPL LDR r1, =ZeroPage+PhysRamTable ; go through phys RAM table MOV r6, r2 ; make copy of r2 (since that must be preserved) 10 LDMIA r1!, {r0, r4} ; load next address, size SUBS r6, r6, r4, LSR #12 ; subtract off that many pages BCS %BT10 ; if more than that, go onto next bank ADD r6, r6, r4, LSR #12 ; put back the ones which were too many ADD r0, r0, r6, LSL #12 ; move on address by the number of pages left LDR r6, [sp] ; reload old logical address ; now we have r6 = old logical address, r2 = physical page number, r0 = physical address TEQ r6, r3 ; TMD 19-Jan-94: if old logaddr = new logaddr, then BEQ %FT20 ; don't remove page from where it is, to avoid window ; where page is nowhere. LDR r1, =L2PT ADD r6, r1, r6, LSR #10 ; r6 -> L2PT entry for old log.addr MOV r4, r6, LSR #12 ; r4 = word offset into L2 for address r6 LDR r4, [r1, r4, LSL #2] ; r4 = L2PT entry for L2PT entry for old log.addr TST r4, #3 ; if page not there BEQ %FT20 ; then no point in trying to remove it LDR r4, [r6] ; r4 = L2PT entry for old log.addr MOV r4, r4, LSR #12 ; r4 = physical address for old log.addr TEQ r4, r0, LSR #12 ; if equal to physical address of page being moved BNE %FT20 ; if not there, then just put in new page AND r4, r11, #PageFlags_Unsafe Push "r0, r3, r11, r14" ; save phys.addr, new log.addr, new PPL, lr ADD r3, sp, #4*4 LDMIA r3, {r3, r11} ; reload old logical address, old PPL LDR r0, =DuffEntry ; Nothing to do if wasn't mapped in ORR r11, r11, r4 TEQ r3, r0 MOV r0, #0 ; cause translation fault BLNE BangL2PT ; map page out Pull "r0, r3, r11, r14" 20 ADD sp, sp, #8 ; junk old logical address, PPL B BangCamAltEntry ; and branch into BangCam code ; ************************************************************************************** ; ; BangCam - Update CAM, MMU for page move, assuming page currently mapped out ; ; This routine maps a physical page to a given logical address ; It is assumed that the physical page is currently not mapped anywhere else ; ; in: r2 = physical page number ; r3 = logical address (2nd copy if doubly mapped) ; r9 = offset from 1st to 2nd copy of doubly mapped area (either source or dest, but not both) ; r11 = PPL ; ; out: r0, r1, r4, r6 corrupted ; r2, r3, r5, r7-r12 preserved ; ; NB The physical page number MUST be in range. BangCam ROUT TST r11, #DynAreaFlags_DoublyMapped ; if area doubly mapped SUBNE r3, r3, r9 ; then move ptr to 1st copy LDR r1, =ZeroPage+PhysRamTable ; go through phys RAM table MOV r6, r2 ; make copy of r2 (since that must be preserved) 10 LDMIA r1!, {r0, r4} ; load next address, size SUBS r6, r6, r4, LSR #12 ; subtract off that many pages BCS %BT10 ; if more than that, go onto next bank ADD r6, r6, r4, LSR #12 ; put back the ones which were too many ADD r0, r0, r6, LSL #12 ; move on address by the number of pages left BangCamAltEntry LDR r4, =DuffEntry ; check for requests to map a page to nowhere TEQ r4, r3 ; don't actually map anything to nowhere MOVEQ pc, lr GetPTE r0, 4K, r0, r11 LDR r1, =L2PT ; point to level 2 page tables ;fall through to BangL2PT ;internal entry point for updating L2PT entry ; ; entry: r0 = new L2PT value, r1 -> L2PT, r3 = logical address (4k aligned), r11 = PPL ; ; exit: r0,r1,r4,r6 corrupted ; BangL2PT ; internal entry point used only by BangCamUpdate Push "lr" MOV r6, r0 TST r11, #PageFlags_Unsafe BNE BangL2PT_unsafe ;In order to safely map out a cacheable page and remove it from the ;cache, we need to perform the following process: ;* Make the page uncacheable ;* Flush TLB ;* Clean+invalidate cache ;* Write new mapping (r6) ;* Flush TLB ;For uncacheable pages we can just do the last two steps ; TEQ r6, #0 ;EQ if mapping out TSTEQ r11, #DynAreaFlags_NotCacheable ;EQ if also cacheable (overcautious for temp uncache+illegal PCB combos) LDR r4, =ZeroPage BNE %FT20 LDR lr, [r4, #MMU_PCBTrans] GetTempUncache r0, r11, lr LDR lr, [r1, r3, LSR #10] ;get current L2PT entry BIC lr, lr, #TempUncache_L2PTMask ;remove current attributes ORR lr, lr, r0 STR lr, [r1, r3, LSR #10]! ;Make uncacheable TST r11, #DynAreaFlags_DoublyMapped BEQ %FT19 STR lr, [r1, r9, LSR #10] ;Update 2nd mapping too if required ADD r0, r3, r9 ARMop MMU_ChangingEntry,,, r4 19 MOV r0, r3 ARMop MMU_ChangingEntry,,, r4 LDR r1, =L2PT 20 STR r6, [r1, r3, LSR #10]! ;update L2PT entry TST r11, #DynAreaFlags_DoublyMapped BEQ %FT21 STR r6, [r1, r9, LSR #10] ;Update 2nd mapping MOV r0, r3 ARMop MMU_ChangingUncachedEntry,,, r4 ; TLB flush for 1st mapping ADD r3, r3, r9 ;restore r3 back to 2nd copy 21 Pull "lr" MOV r0, r3 ARMop MMU_ChangingUncachedEntry,,tailcall,r4 BangL2PT_unsafe STR r6, [r1, r3, LSR #10]! ; update level 2 page table (and update pointer so we can use bank-to-bank offset TST r11, #DynAreaFlags_DoublyMapped ; if area doubly mapped STRNE r6, [r1, r9, LSR #10] ; then store entry for 2nd copy as well ADDNE r3, r3, r9 ; and point logical address back at 2nd copy Pull "pc" [ ARM6support PPLTransARM6 & (AP_Full * L2_APMult) + L2_SmallPage ; R any W any & (AP_Read * L2_APMult) + L2_SmallPage ; R any W sup & (AP_None * L2_APMult) + L2_SmallPage ; R sup W sup & (AP_Read * L2_APMult) + L2_SmallPage ; R any W sup PPLAccessARM6 ; EL1EL0 ; RWXRWX GenPPLAccess 2_111111 GenPPLAccess 2_111101 GenPPLAccess 2_111000 GenPPLAccess 2_111101 DCD -1 ] PPLTrans & (AP_Full * L2_APMult) + L2_SmallPage ; R any W any & (AP_Read * L2_APMult) + L2_SmallPage ; R any W sup & (AP_None * L2_APMult) + L2_SmallPage ; R sup W sup & (AP_ROM * L2_APMult) + L2_SmallPage ; R any W none PPLTransX & (AP_Full * L2X_APMult) + L2_ExtPage ; R any W any & (AP_Read * L2X_APMult) + L2_ExtPage ; R any W sup & (AP_None * L2X_APMult) + L2_ExtPage ; R sup W sup & (AP_ROM * L2X_APMult) + L2_ExtPage ; R any W none PPLAccess ; EL1EL0 ; RWXRWX GenPPLAccess 2_111111 GenPPLAccess 2_111101 GenPPLAccess 2_111000 GenPPLAccess 2_101101 DCD -1 PageShifts = 12, 13, 0, 14 ; 1 2 3 4 = 0, 0, 0, 15 ; 5 6 7 8 LTORG ; +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ; ; "ARM600"-specific OS_MMUControl code ; ; in: r0 = 0 (reason code 0, for modify control register) ; r1 = EOR mask ; r2 = AND mask ; ; new control = ((old control AND r2) EOR r1) ; ; out: r1 = old value ; r2 = new value MMUControl_ModifyControl ROUT Push "r0,r3,r4,r5" CMP r1,#0 CMPEQ r2,#&FFFFFFFF BEQ MMUC_modcon_readonly LDR r3,=ZeroPage LDRB r5,[r3, #ProcessorArch] PHPSEI r4 ; disable IRQs while we modify soft copy (and possibly switch caches off/on) CMP r5,#ARMv4 LDRLO lr, [r3, #MMUControlSoftCopy] ARM_read_control lr,HS ; if ARMv4 or later, we can read control reg. - trust this more than soft copy AND r2, r2, lr EOR r2, r2, r1 MOV r1, lr STR r2, [r3, #MMUControlSoftCopy] BIC lr, r2, r1 ; lr = bits going from 0->1 TST lr, #MMUC_C ; if cache turning on then flush cache before we do it BEQ %FT05 ARMop Cache_InvalidateAll,,,r3 ; D-cache turning on, I-cache invalidate is either necessary (both turning on) or a safe side-effect B %FT10 05 TST lr, #MMUC_I ARMop IMB_Full,NE,,r3 ; I-cache turning on, Cache_InvalidateAll could be unsafe 10 BIC lr, r1, r2 ; lr = bits going from 1->0 TST lr, #MMUC_C ; if cache turning off then clean data cache first BEQ %FT15 ARMop Cache_CleanAll,,,r3 15 ARM_write_control r2 BIC lr, r1, r2 ; lr = bits going from 1->0 TST lr, #MMUC_C ; if cache turning off then flush cache afterwards BEQ %FT17 LDR r3,=ZeroPage ARMop Cache_InvalidateAll,,,r3 ; D-cache turned off, can safely invalidate I+D B %FT20 17 TST lr, #MMUC_I BEQ %FT20 LDR r3,=ZeroPage ARMop IMB_Full,,,r3 ; Only I-cache which turned off, clean D-cache & invalidate I-cache 20 PLP r4 ; restore IRQ state Pull "r0,r3,r4,r5,pc" MMUC_modcon_readonly LDR r3, =ZeroPage LDRB r5, [r3, #ProcessorArch] CMP r5, #ARMv4 LDRLO lr, [r3, #MMUControlSoftCopy] ARM_read_control lr,HS ; if ARMv4 or later, we can read control reg. - trust this more than soft copy STRHS lr, [r3, #MMUControlSoftCopy] MOV r1, lr MOV r2, lr Pull "r0,r3,r4,r5,pc" ; If extended pages are supported: ; PPLTrans should contain L2X_AP + L2_ExtPage ; PCBTrans should contain L2_C+L2_B+L2_TEX (for an extended page) ; If extended pages aren't supported: ; PPLTrans should contain L2_AP + L2_SmallPage ; PCBTrans should contain L2_C+L2_B ; In: ; r0 = phys addr (aligned) ; r1 = page flags: ; DynAreaFlags_APBits ; DynAreaFlags_NotBufferable ; DynAreaFlags_NotCacheable ; DynAreaFlags_CPBits ; PageFlags_TempUncacheableBits ; r2 -> PPLTrans ; r3 -> PCBTrans ; Out: ; r0 = PTE for 4K page ("small page" or "extended page" depending on PPLTrans) Get4KPTE ROUT Entry "r4" AND lr, r1, #DynAreaFlags_APBits LDR lr, [r2, lr, LSL #2] ; Insert AP bits, page type/size ORR r0, r0, lr ; Insert CB+TEX bits ASSERT DynAreaFlags_CPBits = 7*XCB_P :SHL: 10 ASSERT DynAreaFlags_NotCacheable = XCB_NC :SHL: 4 ASSERT DynAreaFlags_NotBufferable = XCB_NB :SHL: 4 TST r1, #PageFlags_TempUncacheableBits AND r4, r1, #DynAreaFlags_NotCacheable + DynAreaFlags_NotBufferable AND lr, r1, #DynAreaFlags_CPBits ORRNE r4, r4, #DynAreaFlags_NotCacheable ; if temp uncache, set NC bit, ignore P ORREQ r4, r4, lr, LSR #10-4 ; else use NC, NB and P bits LDRB r4, [r3, r4, LSR #4] ; convert to X, C and B bits for this CPU ORR r0, r0, r4 EXIT ; In: ; As per Get4KPTE ; Out: ; r0 = PTE for 64K page ("large page") Get64KPTE ROUT Entry "r4" AND lr, r1, #DynAreaFlags_APBits LDR lr, [r2, lr, LSL #2] ; Force to large page ORR r0, r0, #L2_LargePage ; Insert AP bits AND lr, lr, #L2X_AP ; If extended pages are supported, we need to expand L2X_AP to L2_AP MOV r4, #L2_APMult/L2X_APMult MLA r0, r4, lr, r0 50 ; Insert CB+TEX bits ; Shared with Get1MPTE ASSERT DynAreaFlags_CPBits = 7*XCB_P :SHL: 10 ASSERT DynAreaFlags_NotCacheable = XCB_NC :SHL: 4 ASSERT DynAreaFlags_NotBufferable = XCB_NB :SHL: 4 TST r1, #PageFlags_TempUncacheableBits AND r4, r1, #DynAreaFlags_NotCacheable + DynAreaFlags_NotBufferable AND lr, r1, #DynAreaFlags_CPBits ORRNE r4, r4, #DynAreaFlags_NotCacheable ; if temp uncache, set NC bit, ignore P ORREQ r4, r4, lr, LSR #10-4 ; else use NC, NB and P bits LDRB r4, [r3, r4, LSR #4] ; convert to X, C and B bits for this CPU ; Move TEX field up ORR r4, r4, r4, LSL #L2L_TEXShift-L2_TEXShift BIC r4, r4, #L2_TEX :OR: ((L2_C+L2_B) :SHL: (L2L_TEXShift-L2_TEXShift)) ORR r0, r0, r4 EXIT ; In: ; As per Get4KPTE ; Out: ; r0 = PTE for 1M page ("section") Get1MPTE ALTENTRY AND lr, r1, #DynAreaFlags_APBits [ ARM6support ; Set U bit if cacheable and not ROM access ; (Because ROM access isn't supported, it'll get mapped to AP_Read. ; Writes to ROM will presumably be ignored by the bus, but if we have ; U set it will update the cache, effectively giving people the power ; to temporarily overwrite ROM) CMP lr, #2 TSTLS r1, #DynAreaFlags_NotCacheable ORREQ r0, r0, #L1_U ] LDR lr, [r2, lr, LSL #2] ; Force to section map ORR r0, r0, #L1_Section ; Insert AP bits ASSERT L1_AP = L2X_AP :SHL: 6 AND lr, lr, #L2X_AP ORR r0, r0, lr, LSL #6 ; Insert CB+TEX bits ASSERT L1_C = L2_C ASSERT L1_B = L2_B ASSERT L1_TEXShift = L2L_TEXShift B %BT50 ; In: ; r0 = L2PT entry ; Out: ; r0,r1 = phys addr ; r2 = page flags ; or -1 if fault ; r3 = page size (bytes) DecodeL2Entry ROUT ANDS r3, r0, #3 MOVEQ r2, #-1 MOVEQ pc, lr Entry "r4-r6" ; Get AP bits in low bits ASSERT L2X_APMult = 1:SHL:4 MOV r2, r0, LSR #4 ; Remap TEX+CB so that they're in the same position as an extended page entry ASSERT L2_LargePage < L2_SmallPage ASSERT L2_SmallPage < L2_ExtPage CMP r3, #L2_SmallPage AND r4, r0, #L2_C+L2_B ANDLT lr, r0, #L2L_TEX ORRLT r4, r4, lr, LSR #L2L_TEXShift-L2_TEXShift ANDGT lr, r0, #L2_TEX ORRGT r4, r4, lr ; Align phys addr to page size and set up r3 MOV r0, r0, LSR #12 BICLT r0, r0, #15 MOV r0, r0, LSL #12 MOV r1, #0 MOVLT r3, #65536 MOVGE r3, #4096 20 ; Common code shared with DecodeL1Entry ; Only four PPL possibilities, so just directly decode it ; ARM access goes 0 => all R/O, 1 => user none, 2 => user R/O, 3 => user R/W ; PPL access goes 0 => user R/W, 1 => user R/O, 2 => user none, 3 => all R/0 ; i.e. just invert the bits AND r2, r2, #3 LDR r6, =ZeroPage EOR r2, r2, #3 ; Search through PCBTrans for a match on TEX+CB ; Funny order is used so that NCNB is preferred over other variants (since NCNB is common fallback) LDR r6, [r6, #MMU_PCBTrans] MOV lr, #3 30 LDRB r5, [r6, lr] CMP r5, r4 BEQ %FT40 TST lr, #2_11 SUBNE lr, lr, #1 ; loop goes 3,2,1,0,7,6,5,4,...,31,30,29,28 ADDEQ lr, lr, #7 TEQ lr, #35 BNE %BT30 ; Give up if end of table reached 40 ; Decode index back into page flags ; n.b. temp uncache is ignored (no way we can differentiate between real uncached) ASSERT DynAreaFlags_CPBits = 7*XCB_P :SHL: 10 ASSERT DynAreaFlags_NotCacheable = XCB_NC :SHL: 4 ASSERT DynAreaFlags_NotBufferable = XCB_NB :SHL: 4 AND r4, lr, #XCB_NC+XCB_NB AND lr, lr, #7*XCB_P ORR r2, r2, r4, LSL #4 ORR r2, r2, lr, LSL #10 EXIT ; In: ; r0 = L1PT entry ; Out: ; r0,r1 = phys addr of section or L2PT entry ; r2 = page flags if 1MB page ; or -1 if fault ; or -2 if page table ptr ; r3 = section size (bytes) if section-mapped DecodeL1Entry ALTENTRY AND r2, r0, #3 ASSERT L1_Fault < L1_Page ASSERT L1_Page < L1_Section CMP r2, #L1_Page BGT %FT50 MOVLT r2, #-1 MOVEQ r2, #-2 MOVEQ r0, r0, LSR #10 MOVEQ r0, r0, LSL #10 MOVEQ r1, #0 EXIT 50 ; Get AP bits in low bits ASSERT L1_APMult = 1:SHL:10 MOV r2, r0, LSR #10 ; Remap TEX+CB so that they're in the same position as an extended page entry ASSERT L1_C = L2_C ASSERT L1_B = L2_B AND r4, r0, #L1_C+L1_B AND lr, r0, #L1_TEX ORR r4, r4, lr, LSR #L1_TEXShift-L2_TEXShift ; Align phys addr to page size and set up r3 MOV r0, r0, LSR #20 MOV r0, r0, LSL #20 MOV r1, #0 MOV r3, #1048576 ; Jump to common code to do AP decode + PCBTrans search B %BT20 ; In: ; r0 = phys addr (aligned) ; r1 -> ZeroPage ; Out: ; TTBR and any other related registers updated ; If MMU is currently on, it's assumed the mapping of ROM+stack will not be ; affected by this change SetTTBR ROUT ARM_MMU_transbase r0 MOV pc, lr [ CacheablePageTables ; Out: R0 = desired page flags for the page tables GetPageFlagsForCacheablePageTables ROUT ; For ARMv5 and below the MMU can't read from the L1 cache, so the ; best we can do is a write-through cache policy LDR r0, =AreaFlags_PageTablesAccess :OR: (CP_CB_Writethrough :SHL: DynAreaFlags_CPShift) MOV pc, lr ] END