; Copyright 1996 Acorn Computers Ltd
;
; Licensed under the Apache License, Version 2.0 (the "License");
; you may not use this file except in compliance with the License.
; You may obtain a copy of the License at
;
;     http://www.apache.org/licenses/LICENSE-2.0
;
; Unless required by applicable law or agreed to in writing, software
; distributed under the License is distributed on an "AS IS" BASIS,
; WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
; See the License for the specific language governing permissions and
; limitations under the License.
;
        SUBT    => NewReset

; Reset types
SoftReset       * 0
PowerOnReset    * 1
ControlReset    * 2

; CMOS RAM resetting stuff:
CMOSLimit       * &F0

; Keyboard flags
                ^ 1
 [ HAL
KbdScanActive   # 1
                # 2
KbdFlags        # 4
 |
CTRL_Down_Flag  # 1
SHIFT_Down_Flag # 1
KB_There_Flag   # 1

R_Down_Flag     # 1      ; note that these 4 form one word!!
T_Down_Flag     # 1
Del_Down_Flag   # 1
Copy_Down_Flag  # 1

KeyDataPtr      # 4

Port2Present    # 1      ; note that these 4 form one word!!
Port3Present    # 1
KeyState        # 1
KeyMSB          # 1
 ]

; On ARM600, InitIRQWs is in zero page - check it's big enough

        ASSERT  @ <= ?InitIRQWs


;       AddCamEntries
;
; in:   r0 -> appropriate part of CAM map
;       r1 = ap (+ CB bits in new world)
;       r2 = log address
;       r7 = amount of cam map to do
;       r8 = PageSize
;
; out:  r0, r3-r12 preserved
;       r1 corrupted
;       r2 updated by relevant amount

AddCamEntries ROUT
        Push    "r0, lr"
        MOV     lr, r1                  ; access privs (PPL)
        MOV     r1, r7
01
        STMIA   r0!, {r2, lr}           ; store logaddr, PPL
        ADD     r2, r2, r8              ; increment address by 1 page
        SUBS    r1, r1, #8              ; decrement count of how much to do
        BNE     %BT01
        Pull    "r0, pc"

; GetConfiguredSize - convert CMOS address into amount of memory
; in:   r0 = CMOS address
; out:  r0 corrupted
;       r2 = amount in bytes

; NB this routine doesn't do screen size mangling (yet!)

GetConfiguredSize Entry "r1"
        LDR     r1, =ZeroPage
        LDR     r1, [r1, #Page_Size]
        ADRL    lr, PageShifts-1
        LDRB    r1, [lr, r1, LSR #12]   ; r1 = log2 pagesize
        MOV     r2, #127                ; mask of value

        TEQ     r0, #FontCMOS           ; if fontsize
        MOVEQ   r1, #12                 ; then in units of 4K, not pagesize
        MOVEQ   r2, #255                ; and use full byte

        BL      Read                    ; read CMOS ram
        AND     r2, r0, r2              ; value anded with mask
        MOV     r2, r2, LSL r1          ; and shifted up accordingly
        EXIT

; FudgeConfigureRMA - move pages from free pool to somewhere
; r0 = number of pages to attempt to move
; r1 = where to store number of bytes moved
; r3 = base address of where to put memory
; r11 = ap + CB
FudgeConfigureRMA
        Push    lr
        LDR     R10, =ZeroPage
        LDR     R10, [R10, #Page_Size]
        MUL     R0, R10, R0             ; get size in bytes
        MOV     R5, #0                  ; amount moved
        CMP     R0, #0
        BEQ     NoMoreMemory

        LDR     r4, =ZeroPage+FreePoolDANode
        MOV     r6, r11                         ; r6 = ap + CB
        LDR     r7, [r4, #DANode_Base]
        LDR     r8, [r4, #DANode_Size]
        ADD     r7, r7, r8                      ; r7 -> end of free pool +1
10
        CMP     r8, r10                         ; if no free memory left
        BCC     %FT20                           ; then tidy up
        SUB     r7, r7, r10                     ; move free pool pointer backwards
        Push    "r0, r1"
        MOV     r0, r7
        MOV     r1, r3
        BL      MovePageAtR0ToR1WithAccessR6
        Pull    "r0, r1"
        ADD     r3, r3, r10                     ; advance "to" pointer
        SUB     r8, r8, r10                     ; one less page of free memory
        ADD     r5, r5, r10                     ; one more page done
        SUBS    r0, r0, r10
        BNE     %BT10
20
        STR     r8, [r4, #DANode_Size]
NoMoreMemory
        STR     R5, [R1]
        Pull    "PC"

; MassageScreenSize - called from screen DA creation and ReadSysInfo

MassageScreenSize ROUT
        Push    lr
        LDR     lr, =ZeroPage
        LDR     lr, [lr, #VideoSizeFlags]
        TST     lr, #OSAddRAM_VRAMNotForGeneralUse
        MOVNE   r0, lr, LSR #12
        MOVNE   r0, r0, LSL #12
        Pull    pc, NE

        CMP     r0, #0
        BNE     CmosScreenWillDo
      [ ZeroPage <> 0
        LDR     r0, =ZeroPage
      ]
        LDR     r0, [r0, #RAMLIMIT]
        CMP     r0, #512*1024
        MOVEQ   r0, #80*1024
        MOVNE   r0, #160*1024
CmosScreenWillDo
        CMP     r0, #20*1024            ; ensure mode 0 gettable
        ADDCC   r0, r0, r10             ; if not, then add another page
        BCC     CmosScreenWillDo
        CMP     r0, #ScreenMaxSize
        MOVHI   r0, #ScreenMaxSize
        Pull    pc

        LTORG

  [ HAL
    ! 0, "*** DUMMY CONT_Break, soft breaks/resets will not work yet with HAL"
CONT_Break
        AddressHAL
        MOV     a1, #1
        LDR     a2, =L1PT
        CallHAL HAL_Reset
  ]


  [ :LNOT: HAL

; +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
; Data tables: VIDC := mode 0, all palette black

VIDCTAB

; Program Control Register first, to clear power-down bit
; Now depending upon the VIDCClockSource flag, re-program the clock source.
   [ VIDCClockSource = "VCO"
     [ VCOstartfix
        & &E0000404     ; CR: FIFO load 16 words, 1 bpp, ck/2, vclk (allow for doubled VCO freq)
     |
        & &E0000400     ; CR: FIFO load 16 words, 1 bpp, ck/1, vclk
     ]
   ]
   [ VIDCClockSource = "HCLK"
        & &E0000401     ; CR: FIFO load 16 words, 1 bpp, ck/1, hclk
   ]
   [ VIDCClockSource = "RCLK"
        & &E0000406     ; CR: FIFO load 16 words, 1 bpp, ck/2, rclk
   ]

; Don't bother programming all 256 palette entries, we'll be here all night
; Since we're setting up a 1 bit-per-pixel mode, just do colours 0 and 1

        & &10000000     ; Palette address register = 0
        & &00000000     ; Colour 0 = black
        & &00000000     ; Colour 1 = black
        & &40000000     ; Border colour = black
        & &50000000     ; Pointer colour 1 = black
        & &60000000     ; Pointer colour 2 = black
        & &70000000     ; Pointer colour 3 = black

; Get a stable display up so we get stable signals

        & &800003F8     ; HCR  = 76 + 88 + 96 + 640 + 96 + 28
        & &81000044     ; HSWR = 76
        & &82000098     ; HBSR = 76 + 88
        & &830000F2     ; HDSR = 76 + 88 + 96
        & &84000372     ; HDER = 76 + 88 + 96 + 640
        & &850003D8     ; HBER = 76 + 88 + 96 + 640 + 96
        & &860000F3     ; HCSR = HDSR

        & &90000137     ; VCR  = 3 + 19 + 16 + 256 + 16 + 2
        & &91000002     ; VSWR = 3
        & &92000015     ; VBSR = 3 + 19
        & &93000025     ; VDSR = 3 + 19 + 16
        & &94000125     ; VDER = 3 + 19 + 16 + 256
        & &95000135     ; VBER = 3 + 19 + 16 + 256 + 16
        & &96000025     ; VCSR = VDSR
        & &97000025     ; VCER = VDSR

        & &B1000001     ; SCR: sound disabled (+use 24MHz clock)

        & &C00F1003     ; EREG = comp sync, DACs on, ereg output ext lut
   [ VCOstartfix
        & &D0000302     ; FSYNREG, clk = (3+1)/(2+1) * 24MHz = 32MHz  (higher frequency as part of fix)
   |
        & &D0000305     ; FSYNREG, clk = (3+1)/(5+1) * 24MHz = 16MHz
   ]
        & &F0013000     ; DCR: bus D[31:0], Hdisc       ;RCM 29/9/94: changed from &F0012000 at PSwindells request
        & &FFFFFFFF     ; That's the lot


VIDCPhys        *       &03400000       ; used to address VIDC when MMU is off


; Entered here after RESET (or BREAK)

; This code must be capable of being executed at a non-ROM address and with the MMU off,
; and running in 32-bit mode up until the call to MemSize.

CONT_Break
        MOV     r1, #1          ; parameter passed to InitMEMC, to indicate Break not Reset
        B       Continue

CONT    ROUT
        MOV     r1, #0          ; parameter passed to InitMEMC, to indicate Reset not Break
Continue

; First bang MEMC to ensure safety

        BL      InitMEMC        ; initialise MEMC CR, and turn off MMU if it's on

; VInit etc set on ze mode change: no DMA going yet so don't set owt.

        MOV     R1, #VIDCPhys   ; Must ALWAYS initialise VIDC on reset or else
        ADR     R2, VIDCTAB     ; we may get vsync interrupts that stiff us
10      LDR     R0, [R2], #4    ; permanently as VIDC is in an undefined state
        CMP     R0, #-1         ; so have mode 0 with all black palette
        STRNE   R0, [R1]
        BNE     %BT10

; Now bang IOC (disable all but keyboard interrupts)

        MOV     R1, #IOC
        MOV     R0, #&FF                ; all inputs
        STRB    R0, [R1, #IOCControl]   ; in case called by Tim

        MOV     R0, #0
        STRB    R0, [R1, #IOCIRQMSKA]   ; kein interrupts
        STRB    R0, [R1, #IOCFIQMSK]    ; disable FIQs
        STRB    R0, [R1, #IOMD_DMAMSK]  ; disable DMA interrupts, too
        STRB    R0, [R1, #IOMD_IRQMSKC] ; and the rest...
        STRB    R0, [R1, #IOMD_IRQMSKD]

  [ Keyboard_Type = "A1A500" :LOR: Keyboard_Type = "PC"
        MOV     R0, #KARTRxBit          ; used for Archi keyboard or IOMD PC keyboard
  ]
        STRB    R0, [R1, #IOCIRQMSKB]   ; allow communication with kbd, when I_bit gets cleared

; now bits to allow CMOS read/write : need timer

        LDR     R0, =20000-1    ; R0 = Timer delay (units of 0.5 microsecond)
                                ; 20000*0.5E-6 = 0.01 Seconds (100Hz ticker)
                                ; TMD 21-May-93: "-1" correction applied

        STRB    R0, [R1, #Timer0LL]     ; Set up the delay
        MOV     R0, R0, LSR #8
        STRB    R0, [R1, #Timer0LH]
        STRB    R0, [R1, #Timer0GO]     ; and start the ticks

        MOV     R0, #timer0_bit
        STRB    R0, [R1, #IOCIRQCLRA]   ; Clear pending t0 interrupt j.i.c.

  [ VCOstartfix
        ;2nd part of fix for VCO failing to start on A7000 (esp. 7500FE) - forcing PCOMP high for about 3 ms
        LDRB    R0, [R1,#IOMD_ID0]
        CMP     R0, #&E7
        LDREQB  R0, [R1,#IOMD_ID1]
        CMPEQ   R0, #&D4
        BEQ     vcofix_notMorris      ; risky to force PCOMP on Risc PC
        MOV     R0, #VIDCPhys
        LDR     R2, =&D0000342        ; VIDC20 FSYNREG, as in VIDCTAB but with force PCOMP high
        STR     R2, [R0]
        MOV     R0, #3072*2           ; time delay of about 3 ms (0.5 us units)
        STRB    R0, [R1, #Timer0LR]   ; copy counter into output latch
        LDRB    R2, [R1, #Timer0CL]   ; R2 := low output latch
vcofix_waitloop
        STRB    R0, [R1, #Timer0LR]   ; copy counter into output latch
        LDRB    R3, [R1, #Timer0CL]   ; R3 := low output latch
        TEQ     R3, R2                ; unchanged ?
        BEQ     vcofix_waitloop       ; then loop
        MOV     R2, R3                ; copy anyway
        SUBS    R0, R0, #1            ; decrement count
        BNE     vcofix_waitloop       ; loop if not finished
        MOV     R0, #VIDCPhys
        LDR     R2, =&D0000302        ; VIDC20 FSYNREG, as in VIDCTAB (PCOMP low again)
        STR     R2, [R0]
vcofix_notMorris
  ]

; now size memory

        BL      MemSize                 ; out: r0 = page size, r1 = memory size, r2 = MEMC CR value, r3-r14 corrupt

MemSized
        MOV     R8, R0                  ; R8 = page size in bytes
        MOV     R13, R1                 ; R13 is now the RAM size
        MOV     R9, R2                  ; need this to set soft copy right

   [ EmulatorSupport
        ARM_on_emulator R7
        MOVEQ   R7,#&80
        ORREQ   R7,R7,#&3E00            ; r7 := &3E80 = 16000 (standard Risc PC value)
        BLNE    TimeCPU                 ; r7 := CPU speed in kHz/MEMC1a flag
   |
        BL      TimeCPU                 ; r7 := CPU speed in kHz/MEMC1a flag
   ]

; the fixed areas give us : IRQ stack (in cursor), SVC stack (in sysheap base)
; and bottom block makes most sense done here

; now keyboard initialisation: initialise baud rate, send dummy, read dummy

        MOV     R0, #InitKbdWs
        MOV     R1, #0
        STRB    R1, [R0, #CTRL_Down_Flag] ; clear CTRL down flag, R down flag
        STRB    R1, [R0, #SHIFT_Down_Flag]
        STRB    R1, [R0, #KB_There_Flag]
        STR     R1, [R0, #R_Down_Flag]  ; all CMOS reset flags
        STR     R1, [R0, #KeyDataPtr]
        STR     R1, [R0, #Port2Present] ; all KbdRes vars

        B       SetUpKbd                ; No stack yet so branch and branch back.
SetUpKbdReturn


; set up reset interrupt handler (reads, discards keys, setting flags if CTRL or R)
; NB on ARM600 we need to go into 32-bit mode, so we can safely overwrite vectors

        MRS     r0, CPSR                ; switch into IRQ32, still IRQs disabled
        BIC     r0, r0, #&1F
        ORR     r1, r0, #IRQ32_mode
        MSR     CPSR_c, r1

        LDR     sp_irq, =IRQSTK         ; set up sp_irq

        ADRL    R2, MOSROMVecs          ; pick up from table
        LDR     R2, [R2, #&18]          ; this gets overwritten while active,
        MOV     R3, #0
        STR     R2, [R3, #&18]          ; but hopefully by the same value!

        ADDR    R2, IRQ_Test_CTRL_or_R_Pressed ; (could use ADRL, but ADDR macro is nicer)
        STR     R2, [R3, #InitIRQHandler] ; instruction is now a LDR PC,InitKbdHandler

        ORR     r0, r0, #SVC32_mode     ; switch into SVC32

 [ StrongARM
   ;for StrongARM, we need to do an IMB type thing for modifying code in vector area
        ARM_read_ID r1
        AND     r1,r1,#&F000
        CMP     r1,#&A000
        BNE     vectorpoke_notSA_1
        MOV     r1,#0                   ;we clean one cache entry, 0..1F, = vector area
  [ SAcleanflushbroken
        ARMA_clean_DCentry r1
        ARMA_flush_DCentry r1
  |
        ARMA_cleanflush_DCentry r1
  ]
        ARMA_drain_WB
        ARMA_flush_IC
vectorpoke_notSA_1
 ]

        BIC     r0, r0, #I32_bit        ; and enable IRQs
        MSR     CPSR_c, r0

 ; in SVC32 from now until we've finished poking around with vectors



 [ :LNOT: AlwaysClearRAM

; IF por OR FX200 bit set THEN clear memory
        MOV     R0, #IOC
        LDRB    R1, [R0, #IOCIRQSTAA]
        ANDS    R1, R1, #por_bit
        BNE     %FT20

        LDR     R0, =OsbyteVars + :INDEX: ESCBREAK
        LDRB    R1, [R0]
        CMP     R1, #2                  ; unlike popular rumour, bit 1 ain't
        CMPNE   R1, #3                  ; a flag
        BNE     %FT30
20
 ]
        BL      ClearPhysRAM
30
        MOV     r0, #0
        STR     r9, [r0, #MEMC_CR_SoftCopy] ; set soft copy.
        STR     r7, [r0, #MemorySpeed]  ; Remember CPU speed/MEMC1a flag
        STR     r8, [r0, #Page_Size]    ; r8 is still page size from way up there
        STR     r13, [r0, #RAMLIMIT]    ; save sussed memory size in LogRam

        LDR     sp, =SVCSTK             ; set up a stack

; do as much other initialisation as possible, to give keyboard stuff time
 [ StrongARM
        BL      Processor_Type          ; Determines the processor type & stores it in page 0.
 ]


  ]    ; :LNOT: HAL

Continue_after_HALInit

;StrongARM: OK, there is quite a bit of code poking below, to various addresses. We'll
;           defer IMB consideration till the poking's done, then do a full IMB (full
;           data cache clean). This avoids various little IMB's and removes chance of leaving
;           some unnoticed poked code in data cache. The deferral should be safe, because none
;           of the poked code will be used yet awhile (given that current IRQ hardware vector is
;           not actually changed below).

 [ ProcessorVectors
; Copy default processor vector table and default preveneers.
; Code relies on preveneers being immediately after processor vector table
; but could easily be changed into 2 copy loops.
        ASSERT  ProcVecPreVeneers = ProcVec_End
        ASSERT  DefaultPreVeneers = DefaultProcVecs+ProcVec_End-ProcVec_Start

        ADRL    R0, DefaultProcVecs
        LDR     R1, =ZeroPage+ProcVec_Start
        MOV     R2, #ProcVec_End-ProcVec_Start+ProcVecPreVeneersSize
39
        LDR     R3, [R0], #4
        STR     R3, [R1], #4
        SUBS    R2, R2, #4
        BNE     %BT39
 ]

; copy handler addresses
        ADRL    R1, MOSROMVecs+4        ; don't copy to 0: key stuff is using
                                        ; it as workspace!
        LDR     R0, =ZeroPage+4
        LDR     R3, =ZeroPage+EndMOSROMVecs-MOSROMVecs

40
        LDR     R2, [R1], #4            ; N.B. IRQ handler better be same as the one in there
        STR     R2, [R0], #4
        TEQ     R0, R3
        BNE     %BT40

        ChangedProcVecs r0

 [ :LNOT: No26bitCode
; Now we have set up the hardware vectors we can drop back to SVC26 mode

        MRS     r0, CPSR
        BIC     r0, r0, #&1F
        ORR     r0, r0, #SVC26_mode
        MSR     CPSR_c, r0
 ]

 [ CacheCMOSRAM
        DebugTX "InitCMOSCache entry"
        BL      InitCMOSCache           ; initialise cache of CMOS RAM
        DebugTX "InitCMOSCache done"
        TEQ     R0, #0                  ; returns zero on failure
      [ ZeroPage <> 0
        LDREQ   R0, =ZeroPage
      ]
        LDREQ   R1, [R0, #HAL_StartFlags]
        ORREQ   R1, R1, #OSStartFlag_NoCMOS
        STREQ   R1, [R0, #HAL_StartFlags]
 ]

; Now copy the initialised data
        LDR     R0, =ZeroPage+IRQ1V

; first save IOC soft copy so can restore it

        LDRB    R2, [R0, #IOCControlSoftCopy-IRQ1V]
        Push    "R2"
        LDRB    R2, [R0, #CannotReset-IRQ1V]
        Push    "R2"

        ADRL    r1, StartData
        LDR     R3, =ZeroPage+(EndData-StartData+IRQ1V)
DatCopy
        LDR     R2, [R1], #4
        STR     R2, [R0], #4
        TEQ     R0, R3
        BNE     DatCopy

        ADR     r2, CONT_Break
        LDR     r0, =ZeroPage
        STR     r2, [r0, #ResetIndirection]

        MOV     r3, #0                  ; initialise abort list
        STR     r3, [r0, #AbortIndirection]

; Now the SWI despatch + low part of SWI table
        ADRL    R3, DirtyBranch
        LDR     R0, =SWIDespatch
SVCTabCopy                              ; so copy the table
        LDR     R2, [R1], #4
        STR     R2, [R0], #4
        TEQ     R1, R3
        BNE     SVCTabCopy

; pad to 1K table here, rather than use ROM space
        ADRL    R2, NoSuchSWI
        LDR     R4, =1024+SvcTable      ; end of table
PadSVCTable
        CMP     R0, R4
        STRNE   R2, [R0], #4
        BNE     PadSVCTable

; now the dirty branch
        LDR     R1, [R1]
        STR     R1, [R0]

; conversion SWIs all go through same despatch point
        LDR     R0, =SvcTable
        ADRL    R1, despatchConvert
        STR     R1, [R0, #OS_ConvertStandardDateAndTime * 4]
        STR     R1, [R0, #OS_ConvertDateAndTime * 4]

        MOV     R2, #OS_ConvertHex1
conversionSWIfill
        STR     R1, [R0, R2, LSL #2]
        ADD     R2, R2, #1
        CMP     R2, #OS_ConvertVariform
        BLS     conversionSWIfill

; OK, that completes the poking around, some of which is code. Now let's
; do a full IMB type thing, to be safe
;
        LDR     r0, =ZeroPage
        ARMop   IMB_Full,,,r0
        DebugTX "IMB_Full done"

; Initialise CAO ptr to none.

        LDR     R0, =ZeroPage
        LDR     R1, =DuffEntry          ; nothing will be here!!
        STR     R1, [R0, #Curr_Active_Object]

KeyWait * 200000                 ; 1/5 sec wait (in microseconds)
 [ HAL
us      * 1
 |
us      * 2
 ]

 [ HAL
        AddressHAL
        MOV     r6, #25                 ; Check for keyboard 25 times (5 secs max).
        LDR     r4, =ZeroPage+InitIRQWs

kbdwait
        CallHAL HAL_KbdScan
        STR     r0, [r4, #KbdFlags]

        TST     r0, #KbdFlag_Done
        BNE     kbddone

      [ EmulatorSupport
        ARM_on_emulator r0
        MOVEQ   r0, #us
        LDRNE   r0, =KeyWait*us         ; Wait 1/5 second (give keys down a chance to come in).
      |
        LDR     r0, =KeyWait*us         ; Wait 1/5 second (give keys down a chance to come in).
      ]
        CallHAL HAL_CounterDelay
        SUBS    r6, r6, #1              ; else wait a maximum of 5 seconds.
        BNE     kbdwait
kbddone
        MSR     CPSR_c, #I32_bit+SVC32_mode
        CallHAL HAL_KbdScanFinish
        LDR     r1, =ZeroPage+InitIRQWs
        MOV     r0, #0
        STRB    r0, [r1, #KbdScanActive]
        MSR     CPSR_c, #SVC32_mode
        DebugTX "Keyboard scan complete"
 |
    [ KeyWait <> 0
; Check for keyboard there every 1/5 sec. but give up after 2 secs.
        MOV     r2, #IOC
        MOV     r6, #10                 ; Check for keyboard 10 times (2 secs max).
        MOV     r4, #InitKbdWs
kbdwait
        LDRB    r5, [r4, #KB_There_Flag]
      [ EmulatorSupport
        ARM_on_emulator r0
        MOVEQ   r0, #us
        LDRNE   r0, =KeyWait*us         ; Wait 1/5 second (give keys down a chance to come in).
      |
        LDR     r0, =KeyWait*us         ; Wait 1/5 second (give keys down a chance to come in).
      ]
        BL      DoMicroDelay
        TEQ     r5, #0                  ; If keyboard was there 1/5 second ago then
        BNE     kbdthere                ;   continue reset
        SUBS    r6, r6, #1              ; else wait a maximum of 2 seconds.
        BNE     kbdwait
kbdthere
    ]
 ]

 [ ValidateCMOS
; Do a POR if some super-critical values are shagged or if checksum is invalid.
        MOV     R3, #-1                 ; do all RAM if we do any
        BL      ValChecksum             ; Always check the checksum
        BNE     cmos_reset
 ]

 [ ValidateCMOS :LAND: STB

; ScreenSizeCMOS, RAMDiscCMOS, SysHeapCMOS, RMASizeCMOS and SpriteSizeCMOS
; should be 0. Happily they are at consecutive addresses so we can loop through
; them.
        MOV     R1, #ScreenSizeCMOS
reset_loop
        MOV     R0, R1
        BL      Read
        TEQ     R0, #0
        BNE     cmos_reset
        INC     R1
        TEQ     R1, #SpriteSizeCMOS
        BHI     reset_loop

; Year should be >=1995, <=2037 (when 32 bit signed Unix time breaks)
        MOV     R0, #YearCMOS+1
        BL      Read
        MOV     R1, R0
        MOV     R0, #YearCMOS+0
        BL      Read
        MOV     R2, #100
        MLA     R0, R2, R1, R0
        LDR     R1, =1995
        SUB     R0, R0, R1
        CMP     R0, #2037 - 1995
        BHI     cmos_reset

; Bit 4 of DBTBCMOS should be 1 (Boot)
        MOV     R0, #DBTBCMOS
        BL      Read
        TST     R0, #(1:SHL:4)
        BEQ     cmos_reset
 ]


; IF power-on bit set AND R/T/Del/Copy pressed THEN reset CMOS RAM
; note that memory cleared if POR, so key info has had plenty of time!

 [ HAL
        LDR     R0, =ZeroPage+HAL_StartFlags
        LDR     R1, [R0]
        TST     R1, #OSStartFlag_NoCMOS ; If no CMOS, reset for sensible cache
        BNE     cmos_reset
        TST     R1, #OSStartFlag_POR
        BEQ     no_cmos_reset           ; not a power on reset
        DebugTX "POR detected"
      [ CheckProtectionLink
        TST     R1, #OSStartFlag_NoCMOSReset
        BNE     no_cmos_reset
      ]
        TST     R1, #OSStartFlag_CMOSReset
        BNE     cmos_reset
 |
        MOV     R0, #IOC
        LDRB    R1, [R0, #IOCIRQSTAA]
        ANDS    R1, R1, #por_bit
        BEQ     no_cmos_reset

      [ CheckProtectionLink
        LDR     r0, =IOMD_MonitorType

        ; on Issue A's the protection bit is only weakly pulled up,
        ; so force it high, then read it back
        LDRB    r1, [r0]
        ORR     r1, r1, #IOMD_ProtectionLinkBit
        STRB    r1, [r0]

        LDRB    r1, [r0]
        TST     r1, #IOMD_ProtectionLinkBit
        BEQ     no_cmos_reset           ; if zero then CMOS is protected
      ]

    [ STB :LAND: IOMD_C_FrontPanelButton <> 0
      [ FrontPanelButtClearsCMOS
        MOV     r0, #IOMD_Base          ; if front panel button pressed then CMOS reset
        LDRB    r0, [r0, #IOMD_CLINES]
        TST     r0, #IOMD_C_FrontPanelButton
        BEQ     cmos_reset
      ]
    ]

 ]

        LDR     R0, =ZeroPage+InitIRQWs
 [ HAL
        LDR     R7, [R0, #KbdFlags]
        TST     R7, #KbdFlag_R:OR:KbdFlag_T:OR:KbdFlag_Delete:OR:KbdFlag_Copy
 |
        LDR     R7, [R0, #R_Down_Flag]  ; Picks up R/T/Del/Copy flags all in one
        CMP     R7, #0
 ]
        LDRNE   R3, =ZeroPage
        MOVNE   R14, #1
        STRNEB  R14, [R3, #MentionCMOSReset]
        BEQ     no_cmos_reset           ; power on bit checked again there

; CMOS reset detectified.
; Wipe it, then squirt in the MOS's table of default values

 [ HAL
        TST     R7, #KbdFlag_Copy:OR:KbdFlag_Delete
 |
        ASSERT  (Del_Down_Flag - R_Down_Flag) = 2
        ASSERT  (Copy_Down_Flag - Del_Down_Flag) = 1
        MOVS    R3, R7, LSR #16         ; full reset or just system?
 ]
        MOVNE   R3, #-1                 ; Del or Copy does all RAM
        MOVEQ   R3, #UserCMOS           ; R or T just system
    [ ChecksumCMOS
        BL      ValChecksum             ; unless the CMOS ram's corrupt ..
        MOVNE   R3, #-1                 ; .. then blast it anyway.
    ]
cmos_reset
        DebugTX "Reset CMOS"
        ADD     sp, sp, #4              ; junk CannotReset flag from stack

        MOV     R4, #0
cmrlp
        CMP     R3, #-1
        BEQ     cmrall                  ; ignore system-only wipe checks
        CMP     R4, #UserCMOS
        MOVEQ   R4, #&50                ; skip User (30-45) & 3rd party (46-59) & high podules (60-79)
        BEQ     cmrall
        CMP     R4, #PoduleCMOS
        MOVEQ   R4, #&80                ; skip low podules (112-127)
        BEQ     cmrall
        TEQ     R4, #NewADFSCMOS        ; documented in 'Troubleshooting' in
        TEQNE   R4, #CountryCMOS        ; the RISC OS 3.7 user guide as preserved
        BEQ     cmrskip
cmrall
        MOV     R1, R4
        BL      NVMemory_ResetValue     ; get the reset value
        MOVS    R1, R2                  ; when -ve, leave alone
        MOVPL   R0, R4
        BLPL    Write                   ; CMOS(R0) := R1
cmrskip
        ADD     R4, R4, #1
        CMP     R4, #CMOSLimit
        BCC     cmrlp

; IF R or Delete pressed THEN set sync 0 ELSE set sync Auto
        LDR     R0, =ZeroPage+InitIRQWs
 [ HAL
        LDR     R1, [R0, #KbdFlags]
        TST     R1, #KbdFlag_R:OR:KbdFlag_Delete
 |
        LDRB    R1, [R0, #R_Down_Flag]
        CMP     R1, #0
        LDREQB  R1, [R0, #Del_Down_Flag]
        CMPEQ   R1, #0
 ]
        MOV     R0, #VduCMOS
        MOVNE   R1, #MonitorTypeAuto :OR: Sync_Auto     ; if R or Del
        MOVEQ   R1, #MonitorTypeAuto :OR: Sync_Separate ; if T or Copy
        BL      Write

    [ ChecksumCMOS
        BL      MakeChecksum            ; create a valid checksum
    ]
        B       hard_reset              ; CMOS reset only checked on power on, so was hard

no_cmos_reset                           ; R1 has por_bit set if power on
        Push    "r1"
        MOV     r0, #SystemSpeedCMOS
        BL      Read
        BIC     r1, r0, #CMOSResetBit   ; clear bit indicating CMOS reset
        MOV     r0, #SystemSpeedCMOS
        BL      Write
        Pull    "r1"

        Pull    r0                      ; always pull CannotReset flag
 [ SoftResets
        TST     r1, #por_bit
        BNE     hard_reset              ; it was a power-on, so it's a hard reset
        CMP     r0, #0
 [ DebugForcedReset
        MOVNE   r2, #Reset_CannotResetFlag
 ]
        BNE     hard_reset_forced

; IF control pressed OR memory implausible (Check SysHpd, CAM map sensible) THEN hard reset

        LDR     R0, =SysHeapStart
        LDR     R8, [R0, #:INDEX: hpdmagic]
        LDR     R2, =magic_heap_descriptor
        CMP     R8, R2                  ; check sysheap initialised
 [ DebugForcedReset
        MOVNE   r2, #Reset_SysHeapCorrupt
 ]
        BNE     hard_reset_forced

; also check CAM map sensible

        LDR     R5, =ZeroPage
        LDR     R4, [R5, #Page_Size]    ; R4 = page size
        ADRL    R3, PageShifts-1
        LDRB    R4, [R3, R4, LSR #12]   ; R4 = log2(pagesize)
        LDR     R3, [R5, #RAMLIMIT]     ; R3 = total RAM size
        MOV     R2, R3, LSR R4          ; number of pages=total memory / pagesize
        CMP     R2, #256                ; but if fewer than 128 (eg 64 on A305) (NB if <256 then <=128)
        MOVCC   R2, #128                ; then use 128 (all MEMC1's pages need initialising,
                                        ; even if half of them are not in use)
        SUB     R2, R2, #1
        LDR     R3, =CamEntriesForVicky

        LDR     R4, [R5, #MaxCamEntry]  ; get highest CAM entry
        LDR     R5, [R5, #CamEntriesPointer] ; and pointer to CAM soft copy

        CMP     R5, R3                  ; if not the same
 [ DebugForcedReset
        MOVNE   r2, #Reset_WrongCamMapAddress
        BNE     hard_reset_forced
 ]
        CMPEQ   R4, R2                  ; or number of pages not the same
 [ DebugForcedReset
        MOVNE   r2, #Reset_WrongNumberOfPages
 ]
        BNE     hard_reset_forced       ; then do a hard reset

; now check all cam contains sensible values

        LDR     R4, =ZeroPage
        LDR     R4, [R4, #Page_Size]
        SUB     R4, R4, #1
        ORR     R4, R4, #&F0000000      ; can have addresses above 64M
CamCheck
        LDR     R3, [R5, R2, LSL #2]
        BIC     r3, r3, #&F0000000      ; remove PPL
        TST     R3, R4
 [ DebugForcedReset
        MOVNE   r2, #Reset_CamMapCorrupt
 ]
        BNE     hard_reset_forced       ; wally entry: not pagesize multiple, or >= 32M
        SUBS    R2, R2, #1
        BPL     CamCheck

; leave CTRL test till last, so the keyboard's had as much time to
; wiggle the wet string as we can give it
        LDR     R0, =ZeroPage+InitKbdWs
        LDRB    R1, [R0, #CTRL_Down_Flag]
        CMP     R1, #0
        BNE     hard_reset

soft_reset
; clear out 4K of scratchspace, to use as a reverse CAM soft copy;
; set bytes to indicate page mapped to that address. Can then recalculate
; end of memory.

; This code doesn't currently work on ARM600 versions -
; 4K of workspace isn't enough to do this with a 4K page size
; We'd probably want to do it differently anyway, using the L2PT
; But since we're removing soft resets it's not worth the effort

        ASSERT  MEMM_Type <> "ARM600"

        MOV     R5, #ScratchSpace
        MOV     R1, #4*1024
        MOV     R2, #0
clrscratch
        SUBS    R1, R1, #4
        STRPL   R2, [R5, R1]
        BPL     clrscratch

        LDR     r7, =ZeroPage
        LDR     R2, [R7, #Page_Size]
        ADRL    R8, PageShifts-1
        LDRB    R8, [R8, R2, LSR #12]

        LDR     r2, [r7, #RAMLIMIT]
        MOV     r2, r2, LSR r8          ; last valid page
        SUB     r2, r2, #1

        LDR     R7, [R7, #CamEntriesPointer]
        LDR     R12, =DuffEntry

restoreCAMloop
        LDR    R3, [R7, R2, LSL #2]
        MOV    r11, r3, LSR #28
        BIC    r3, r3, #&F0000000

        MOV    R0, R3, LSR R8              ; logram page number
        LDRB   R4, [R5, R0]
        CMP    r4, #0                      ; check for doubly mapped pages
        BEQ    rclon

        ORR    r3, r12, #&30000000         ; force to invalid place if so.
        STR    r3, [R7, R2, LSL #2]
        MOV    r3, r12
        MOV    r11, #3                     ; protected
        MOV    R0, R3, LSR R8
        LDRB   R4, [R5, R0]
rclon
        CMP    r3, #16*1024*1024           ; in application space?
        MOVLT  r11, #0                     ; noprot if so
        STRLT  r3, [R7, R2, LSL #2]
        ADD    R4, R4, #1
        STRB   R4, [R5, R0]                ; sema for interesting pages
        BL     BangCam
        SUBS   R2, R2, #1
        BPL    restoreCAMloop

; now do post-scan to see if we need to do more CAM bashing to get pages back.
; any entries that aren't validateable should be remapped.

        LDR     R1, =ZeroPage
        MOV     R12, #ScratchSpace
        LDR     R2, [R1, #Page_Size]
        MOV     R7, #0
findapplend
        LDRB    R3, [R12], #1
        CMP     R3, #0
        ADDNE   R7, R7, R2
        BNE     findapplend
        STR     R7, [R1, #AplWorkSize]  ; verified value
        LDR     R3, [R1, #RAMLIMIT]     ; calc last valid page:
        MOV     R3, R3, LSR R8          ; RAMLIMIT >> R8
        LDR     R4, [R1, #CamEntriesPointer] ; no PPL
testforremap
        SUBS    R3, R3, #1
        BMI     finishedremap
        LDR     R0, [R4, R3, LSL #2]
        BIC     r0, r0, #&F0000000      ; remove PPL
        ADD     R1, R0, R2
        SWI     XOS_ValidateAddress
        BCC     testforremap

        Push    "R2-R4"
        MOV     R0, R0, LSR R8          ; curr logram page number
        LDRB    R4, [R5, R0]
        SUB     R4, R4, #1
        STRB    R4, [R5, R0]            ; dec sema
        MOV     R2, R3                  ; entry no
        MOV     R3, R7                  ; addr to set to
        BL      BangCamUpdate
        Pull    "R2-R4"
holefilled
        ADD     R7, R7, R2
        LDRB    R0, [R12], #1           ; reinspect our reverse map
        CMP     R0, #0
        BNE     holefilled
      [ ZeroPage <> 0
        LDR     R0, =ZeroPage
      ]
        STR     R7, [R0, #AplWorkSize]
        B       testforremap

finishedremap
        MOV     R12, #NVECTORS-1
        LDR     R11, =ZeroPage+VecPtrTab
freenextvec
        LDR     R2, [R11, R12, LSL #2]
loseveclink
        LDR     R3, [R2, #TailPtr]
        BL      FreeSysHeapNode
        MOVVC   R2, R3
        BVC     loseveclink
        CMP     R3, #0                  ; were we at the end of the chain?
 [ DebugForcedReset
        MOVNE   r2, #Reset_VectorChainCorrupt
 ]
        BNE     hard_reset_forced
        SUBS    R12, R12, #1
        BPL     freenextvec
; so that's the code for restore default vectors, basically
        BL      InitVectors
        LDR     R0, =ZeroPage
        LDR     R1, [R0, #AplWorkSize]
        STR     R1, [R0, #MemLimit]

        LDR     R3, =TickNodeChain
        LDR     R2, [R3]

loseticknodes
        CMP     R2, #0
        BEQ     ticknodesallgone

        LDR     R3, [R2]
        BL      FreeSysHeapNode
 [ DebugForcedReset
        MOVVS   r2, #Reset_TickNodesCorrupt
 ]
        BVS     hard_reset_forced
        MOV     R2, R3
        B       loseticknodes

ticknodesallgone
; and now it's time to free the IRQ structures

        MOV     R12, #(NoInterrupt-1)*12+8      ; last device link offset
        LDR     R11, =DefaultIRQ1V-DefaultIRQ1Vcode+Devices
freenextdev
        LDR     R2, [R11, R12]
losedevlink
        CMP     R2, #0
        BEQ     stepdevice

        LDR     R3, [R2, #8]
        BL      FreeSysHeapNode
 [ DebugForcedReset
        MOVVS   r2, #Reset_DeviceVectorCorrupt
 ]
        BVS     hard_reset_forced
        MOV     R2, R3
        B       losedevlink
stepdevice
        SUBS    R12, R12, #12
        BPL     freenextdev

; now the PIRQ structures and CallBack_Vector
        LDR     R11, =ZeroPage+PIRQ_Chain
        MOV     r4, #PodDesp_Link
losepirqchain
        LDR     R2, [R11]
        CMP     r2, #0                  ; for CallBack_Vector
        BEQ     doobry
losepirqlink
        LDR     R3, [R2, r4]
        BL      FreeSysHeapNode
        MOVVC   R2, R3
        BVC     losepirqlink
        CMP     R3, #0                  ; were we at the end of the chain?
 [ DebugForcedReset
        MOVNE   r2, #Reset_PoduleOrCallBackCorrupt
 ]
        BNE     hard_reset_forced
        LDR     R2, =ZeroPage+PIRQ_Chain
        CMP     R11, R2
        LDR     R2, =ZeroPage+PFIQasIRQ_Chain
        MOVEQ   R11, R2
        CMPNE   r11, r2
        LDREQ   r11, =ZeroPage+CallBack_Vector
    [ PodDesp_Link <> 0
        MOVEQ   r4, #0
    ]
        BEQ     losepirqchain


doobry  Pull    "R1"                    ; IOCControl restoration
        LDR     R0, =ZeroPage
        STRB    R1, [R0, #IOCControlSoftCopy]
        ASSERT  :LNOT: HAL
        MOV     R0, #IOC                ; and bash the hardware
        STRB    R1, [R0, #IOCControl]

        MOV     R0, #SoftReset
        B       ResetPart1Done

 ] ; SoftResets

hard_reset
 [ DebugForcedReset
        MOV     r2, #0                  ; indicate normal hard reset
 ]
hard_reset_forced
        LDR     r8, =ZeroPage
 [ DebugForcedReset
        STR     r2, [r8]                ; store to logical address zero
 ]

        Pull    "R2"                    ; discard old IOC state

; fill in relevant CamMap entries, so can soft start.

        LDR     R8, [R8, #Page_Size]
        ADRL    R1, PageShifts-1
        LDRB    R1, [R1, R8, LSR #12]

        LDR     r2, =ZeroPage
        LDR     r0, [r2, #VideoSizeFlags] ; offset from start of physical pages to static part
        MOV     r0, r0, LSR r1          ; r0 := cam entry number
        MOV     r0, r0, LSL #3          ; r0 := offset into CAM map for start of static part

        MOV     R7, #32*1024*8
        MOV     R7, R7, LSR R1          ; r7 := cam entry offset for 32K

        LDR     R12, [R2, #RAMLIMIT]    ; R12 = total RAM size

 [ :LNOT:HAL
                                        ; new code which allows for MEMC2's small pages
        MOV     R1, R12, LSR R1         ; R1 = number of pages
        CMP     R1, #256                ; but if fewer than 128 (eg 64 on A305) (NB if <256 then <=128)
        MOVCC   R1, #128                ; then use 128 (all MEMC1's pages need initialising,
                                        ; even if half of them are not in use)

        SUB     R3, R1, #1
        STR     R3, [R2, #MaxCamEntry]

        LDR     R1, =CamEntriesForVicky
        STR     R1, [R2, #CamEntriesPointer]


; On ARM600 we must zap all the soft CAM map before adding any entries,
; since the old contents are used in BangCamUpdate

        Push    "r0"
        ADD     r2, r1, r3, LSL #3      ; r2 -> last entry to do
        LDR     r0, =DuffEntry
        MOV     lr, #AP_Duff            ; PPL = no access
WallopDuffOnes
        STMDA   r2!, {r0, lr}           ; store address, PPL
        CMP     r2, r1
        BCS     WallopDuffOnes
        Pull    "r0"
        ADD     R0, R0, R1

        LDR     R2, =CursorChunkAddress
        LDR     r1, =AP_CursorChunk
        BL      AddCamEntries

        CMP     R12, #512*1024
        SUBEQ   R0, R0, R7              ; previous entries
        ADDNE   R0, R0, R7              ; next entries
        MOV     R2, #0
        MOV     r1, #AP_PageZero
        BL      AddCamEntries

        CMP     R12, #512*1024
        SUBEQ   R0, R0, R7              ; previous entries
        ADDNE   R0, R0, R7              ; next entries
        LDR     R2, =SysHeapChunkAddress
        MOV     r1, #AP_SysHeap :OR: PageFlags_Unavailable
        BL      AddCamEntries

        ADD     R0, R0, R7              ; next entries (ignore 512K machines)
        MOV     r7, #0
        LDR     r7, [r7, #L2PTSize]
        MOV     r7, r7, LSR #12-3       ; number of pages * 8
        LDR     R2, =L2PT
        LDR     r1, =AP_L2PT :OR: PageFlags_Unavailable
        BL      AddCamEntries

        ADD     r2, r0, #((L1PT-L2PT):SHR:(12-3))   ; point at PPL for 1st L1 page
        ADD     r2, r2, #4
        LDR     r1, =AP_L1PT
        STR     r1, [r2], #8            ; store 4 CAM entries for 4 x 4K = 16K of L1
        STR     r1, [r2], #8            ; mark them as unavailable for removal
        STR     r1, [r2], #8
        STR     r1, [r2], #8

        ADD     R0, R0, R7              ; add on enough pages for L2PT

        MOV     r7, #0
        LDR     r7, [r7, #SoftCamMapSize] ; number of bytes in soft cam map
        ADD     r7, r7, #UndStackSize
        MOV     r7, r7, LSR #12-3       ; number of bytes of cam map for this
        LDR     R2, =UndStackSoftCamChunk
        MOV     r1, #AP_UndStackSoftCam
        BL      AddCamEntries
 ]
        DebugTX "InitDynamicAreas"

; let's boogie with the CMOS for a bit
; read info and move as much memory as we can

        BL      InitDynamicAreas

; RMA
        Push    "r0-r12"
        MOV     r1, #ChangeDyn_RMA      ; Area number
        MOV     r2, #4096               ; Initial size
        MOV     r3, #RMAAddress         ; Base address
        MOV     r4, #AP_RMA             ; Area flags
        MOV     r5, #RMAMaxSize         ; Maximum size
        ADRL    r6, DynAreaHandler_RMA  ; Pointer to handler
        MOV     r7, r3                  ; Workspace ptr points at area itself
        ADRL    r8, AreaName_RMA        ; Title string - node will have to be reallocated
                                        ; after module init, to internationalise it
        BL      DynArea_Create          ; ignore any error, we're stuffed if we get one!
        Pull    "r0-r12"

; Screen
        Push    "r0-r12"
        MOV     r0, #ScreenSizeCMOS
        BL      Read

        LDR     r5, =ZeroPage
        LDR     r10, [r5, #Page_Size]   ; needed by MassageScreenSize
        MUL     r0, r10, r0             ; convert to bytes
        LDR     r5, [r5, #VideoSizeFlags] ; maximum size
        MOV     r5, r5, LSR #12
        MOV     r5, r5, LSL #12
        BL      MassageScreenSize

        MOV     r1, #ChangeDyn_Screen   ; area number
        MOV     r2, r0                  ; initial size
        MOV     r3, #-1                 ; Base address dynamic
        LDR     r4, =AP_Screen          ; area flags
        ADRL    r6, DynAreaHandler_Screen ; handler
        VDWS    r7                      ; workspace pointer
        MOV     r8, #0
        STR     r8, [r7, #CursorFlags]  ; put zero in CursorFlags as an indication that VDU not yet inited
        STR     r2, [r7, #TotalScreenSize]
        ADRL    r8, AreaName_Screen     ; area name
        BL      DynArea_Create
        STR     r3, [r7, #ScreenEndAddr]
        Pull    "r0-r12"

  [ LongCommandLines :LAND: (:LNOT: HAL)
        ;sort out the Kernel buffers dynamic area
        Push    "r0-r12"
        MOV     r1, #ChangeDyn_Kbuffs   ; Area number
        MOV     r2, #KbuffsSize         ; Initial (and in fact permanent) size
        LDR     r3, =KbuffsBaseAddress  ; Base address
        MOV     r4, #AP_Kbuffs          ; Area flags
        MOV     r5, #KbuffsMaxSize      ; Maximum size
        MOV     r6, #0                  ; no handler
        MOV     r7, #0
        ADRL    r8, AreaName_Kbuffs     ; Title string - node will have to be reallocated
                                        ; after module init, to internationalise it
        BL      DynArea_Create          ; ignore any error, we're stuffed if we get one!
        Pull    "r0-r12"
  ]

; SpriteArea
        Push    "r0-r12"
        MOV     r0, #0                  ; initialise SpriteSize to zero
      [ ZeroPage = 0
        STR     r0, [r0, #SpriteSize]   ; (fixes bug MED-00811)
      |
        LDR     r1, =ZeroPage
        STR     r0, [r1, #SpriteSize]   ; (fixes bug MED-00811)
      ]

        MOV     r0, #SpriteSizeCMOS     ; find out how much spritesize configured
        BL      GetConfiguredSize       ; in: r0 = CMOS address, out: r2 = size

        MOV     r1, #ChangeDyn_SpriteArea ; Area number
        MOV     r3, #-1                 ; Base address dynamic
        MOV     r4, #AP_Sprites         ; Area flags
        MOV     r5, #16*1024*1024       ; Maximum size (changed from -1, address space preservation)
        ADRL    r6, DynAreaHandler_Sprites ; Pointer to handler
        MOV     r7, #-1                 ; Use base address as workspace ptr
        ADRL    r8, AreaName_SpriteArea ; Title string - node will have to be reallocated
                                        ; after module init, to internationalise it
        BL      DynArea_Create          ; ignore any error, we're stuffed if we get one!
        Pull    "r0-r12"

; RAMDisc
        Push    "r0-r12"
        MOV     r0, #RAMDiscCMOS        ; find out how much RAM disc configured
        BL      GetConfiguredSize       ; in: r0 = CMOS address, out: r2 = size

        MOV     r1, #ChangeDyn_RamFS    ; Area number
        MOV     r3, #-1                 ; Base address dynamic
        ARM_read_ID r4
        AND     r4, r4, #&F000
        CMP     r4, #&A000
        MOVEQ   r4, #AP_RAMDisc_SA      ; Area flags, if StrongARM  (introduced for Ursula)
        MOVNE   r4, #AP_RAMDisc         ; Area flags
      [ {FALSE}
        MOV     r5, #16*1024*1024       ; Limit maximum size to 16MB while fiddling with FileCore
      |
        MOV     r5, #MaxRAMFS_Size*1024*1024      ; A trade off between nice big disc and complete waste of address space
      ]
        ADRL    r6, DynAreaHandler_RAMDisc ; Pointer to handler
        MOV     r7, #-1                 ; Use base address as workspace ptr
        ADRL    r8, AreaName_RAMDisc    ; Title string - node will have to be reallocated
                                        ; after module init, to internationalise it
        BL      DynArea_Create          ; ignore any error, we're stuffed if we get one!
        Pull    "r0-r12"

; FontArea
        Push    "r0-r12"
        MOV     r0, #FontCMOS           ; find out how much font cache configured
        BL      GetConfiguredSize       ; in: r0 = CMOS address, out: r2 = size

        MOV     r1, #ChangeDyn_FontArea ; Area number
        MOV     r3, #-1                 ; Base address dynamic
        MOV     r4, #AP_FontArea        ; Area flags
        MOV     r5, #32*1024*1024       ; Maximum size changed from -1 for Ursula (limit address
                                        ; space usage on large memory machines)
        ADRL    r6, DynAreaHandler_FontArea ; Pointer to handler
        MOV     r7, #-1                 ; Use base address as workspace ptr
        ADRL    r8, AreaName_FontArea   ; Title string - node will have to be reallocated
                                        ; after module init, to internationalise it
        BL      DynArea_Create          ; ignore any error, we're stuffed if we get one!
        Pull    "r0-r12"

        LDR     R0, =(1024*1024):SHR:12 ; 1MB of RAM in aplspace should be plenty for ROM init. Theoretically we don't need any at all, but having some there should make it easier to debug any ROM init failures.
        MOV     R3, #32*1024            ; aplwork start
        LDR     R1, =ZeroPage+AplWorkSize ; aplwork size
        MOV     r11, #AP_AppSpace
        BL      FudgeConfigureRMA       ; put some memory in aplspace

        LDR     R0, =ZeroPage
        LDR     R1, [R0, #AplWorkSize]
        ADD     R1, R1, #32*1024
        STR     R1, [R0, #AplWorkSize]
        STR     R1, [R0, #MemLimit]

        DebugTX "InitVectors"
        BL      InitVectors               ; ready for OsByte to read mode

        LDR     R1, =ZeroPage+ModuleSWI_HashTab
        MOV     R2, #ModuleSHT_Entries
      [ ZeroPage <> 0
        MOV     R0, #0
      ]
clearmswis
        SUBS    R2, R2, #1
        STR     R0, [R1, R2, LSL #2]
        BGT     clearmswis

      [ ZeroPage <> 0
        LDR     R2, =ZeroPage
      ]

     [  International
        MOV     R1, #-1                                 ; We don't have a message file yet !
        STRB    R1, [R2, #ErrorSemaphore]               ; Don't translate errors.
        STR     R0, [R2, #KernelMessagesBlock]          ; No message file open.
      [ CacheCommonErrors
        STR     R0, [R2, #CachedErrorBlocks]            ; No cached errors
      ]
     ]

  [ HAL
        LDR     R0, =ZeroPage+HAL_StartFlags
        LDR     R1, [R0]
        TST     R1, #OSStartFlag_POR
  |
        MOV     R0, #IOC
        LDRB    R1, [R0, #IOCIRQSTAA]
        ANDS    R1, R1, #por_bit
        STRNEB  R1, [R0, #IOCIRQCLRA]   ; clear POR if set
  ]


        ; Make the choice between PowerOn and Hard reset based purely on
        ; the state of the POR bit and NOT on whether memory was cleared.
 [ {FALSE}
        LDREQ   R0, =ZeroPage+OsbyteVars + :INDEX: LastBREAK
        LDREQB  R0, [R0]
        TSTEQ   R0, #&80                ; tbs set if memory cleared
 ]
        MOVNE   R0, #PowerOnReset
        MOVEQ   R0, #ControlReset


ResetPart1Done                          ; R0 is reset type
        WritePSRc SVC_mode + I_bit, r1  ; interrupts off since kbd bash done
        LDR     R1, =ZeroPage+OsbyteVars + :INDEX: LastBREAK
        STRB    R0, [R1]

        LDR     R1, =ZeroPage+InitIRQWs
 [ HAL
        LDR     R0, [R1, #KbdFlags]
        AND     R1, R0, #KbdFlag_Shift
        AND     R0, R0, #KbdFlag_Present
 |
        LDRB    R0, [R1, #KB_There_Flag]
        LDRB    R1, [R1, #SHIFT_Down_Flag]
 ]
        Push    "R0, R1"                ; save until after MOSInit

        DebugTX "InitIRQ1"
        BL      InitialiseIRQ1Vtable

        LDR     R3, =ZeroPage
        ADRL    R1, Default_PIRQHandler_Node
        STR     R1, [R3, #PIRQ_Chain]
        STR     R1, [R3, #PFIQasIRQ_Chain]
 ASSERT Default_PFIQasIRQHandler_Node = Default_PIRQHandler_Node

        MOV     R0, #0                  ; put in IRQ handler, word at 0
        STRB    r0, [r3, #FIQclaim_interlock]
        STRB    r0, [r3, #CallBack_Flag]
        STR     r0, [r3, #CallBack_Vector]

; Create the Branch Through 0 Trampoline in the system heap
        MOV     R3, #Branch0_Trampoline_Size
        BL      ClaimSysHeapNode
        ADRVCL  R0, Branch0_Trampoline
        ASSERT  Branch0_Trampoline_Init = 20
        LDMVCIA R0, {R1,R3,R4,R5,R14}
        STMVCIA R2, {R1,R3,R4,R5,R14}
        LDRVC   R0, =ZeroPage
        STRVC   R2, [R0, #ProcVec_Branch0]

 [ :LNOT: No26bitCode

; we're poking locations 0 and &18 here, so we'd best go back to SVC32

        MRS     r2, CPSR
        BIC     r3, r2, #&1F
        ORR     r3, r3, #SVC32_mode
        MSR     CPSR_c, r3
 ]

 [ DebugForcedReset
        LDR     R1, [R0]
        TEQ     R1, #0                                  ; if normal hard reset
        LDREQ   R1, BranchThroughZeroInstruction2       ; then get branchthruzero code
 |
        LDR     R1, BranchThroughZeroInstruction2
 ]
        STR     R1, [R0]                                ; put branch through 0 code at 0

        LDR     R1, RealIRQHandler
        STR     R1, [R0, #&18]

        LDR     R2, =ZeroPage+InitIRQWs                 ; clear temp ws
        MOV     R3, #0
        MOV     R4, #0
        STMIA   R2!, {R3,R4}
        STMIA   R2!, {R3,R4}
        DebugTX "IMB_Full"

   ;we need to do an IMB type thing for modifying code in vector area,
   ;and for copying irq handler code
   ;
        ARMop   IMB_Full,,,r0
        ChangedProcVecs r0
        LDR     r0,=ZeroPage


 [ :LNOT:No26bitCode

; now back to SVC26

        MSR     CPSR_c, r2
 ]

        MOV     R1, #&100
        STR     R1, [R0, #RCLimit]
        MOV     R1, #0
        STR     R1, [R0, #ReturnCode]
        STR     R1, [R0, #TickNodeChain]

; clear the keyboard workspace (tidy!)
        ADD     R0, R0, #&1C
        MOV     R2, #InitWsEnd - &1C
        BL      memset

;now put in error handler and escape handler
        BL      DEFHAN
        BL      DEFHN2
        MOV     R0, #ExceptionDumpArea
        LDR     R1, =ZeroPage+DUMPER
        SWI     XOS_ChangeEnvironment

        VDWS    WsPtr                   ; main MOS initialisation
        DebugTX "VduInit"
        BL      VduInit
        DebugTX "ExecuteInit"
        BL      ExecuteInit
        DebugTX "KeyInit"
        BL      KeyInit
        DebugTX "MouseInit"
        BL      MouseInit
        DebugTX "OscliInit"
        BL      OscliInit               ; before initialising modules

        DebugTX "Enabling IRQs"
        WritePSRc SVC_mode, R14         ; enable IRQs
        DebugTX "IRQs on"

 [ DebugTerminal
        MOV     R0, #RdchV
        ADRL    R1, DebugTerminal_Rdch
        LDR     R2, =ZeroPage
        LDR     R2, [R2, #HAL_Workspace]
        SWI     XOS_Claim
        MOV     R0, #WrchV
        ADRL    R1, DebugTerminal_Wrch
        SWI     XOS_Claim
        DebugTX "Debug terminal on"
 ]

        [ DoInitialiseMode :LOR: :LNOT: Embedded_UI
        BL      InitialiseMode          ; select correct screen mode, in case any
                                        ; module prints anything in initialisation
        ]

        MOV     R0, #&FD                ; read last reset type
        MOV     R1, #0
        MOV     R2, #&FF
        SWI     XOS_Byte
        CMP     R1, #SoftReset          ; soft reset?
        BEQ     SkipHardResetPart2

; HardResetPart2
 [ HAL
        DebugTX "HAL_InitDevices"
        AddressHAL
        MOV     R0, #0
      [ ZeroPage = 0
        STR     R0, [R0, #DeviceCount]
        STR     R0, [R0, #DeviceTable]
      |
        LDR     R1, =ZeroPage
        STR     R0, [R1, #DeviceCount]
        STR     R0, [R1, #DeviceTable]
      ]
        CallHAL HAL_InitDevices         ; get HAL to register any devices it has
 |
        BL      L1L2PTenhancements      ; little tricks on cacheability etc for performance
 ]
        DebugTX "InitVariables"
        BL      InitVariables
        DebugTX "AMBControl_Init"
        BL      AMBControl_Init         ; initialise AMBControl section
        DebugTX "ModuleInit"
        BL      ModuleInit              ; initialise modules
                                        ; scan podules, copy modules.

        MOV     R0, #0                  ; shrink sysheap as far as will go.
        SUB     R1, R0, #4*1024*1024
        SWI     XOS_ChangeDynamicArea
        MOV     R0, #ReadCMOS
        MOV     R1, #SysHeapCMOS
        SWI     XOS_Byte
        AND     R2, R2, #2_111111       ; mask to same size as status
        LDR     R0, =ZeroPage
        LDR     R0, [R0, #Page_Size]
        MUL     R3, R0, R2              ; size spare wanted
        BL      ClaimSysHeapNode
        MOV     R0, #HeapReason_Free
        SWI     XOS_Heap

        MOV     R0, #ReadCMOS
        MOV     R1, #FileLangCMOS
        SWI     XOS_Byte
        MOV     R1, R2
        MOV     R0, #FSControl_SelectFS ; set configured filing system
        SWI     XOS_FSControl

        ; Update RTC now all the modules are running
        SWI     XOS_ResyncTime

        ; OS_ReadSysInfo 9,2 now relies on the Territory module, which may
        ; enable IRQs. But the PRMs say OS_ReadSysInfo shouldn't alter the IRQ
        ; state. So call it once here just to initialise the string which it
        ; uses the Territory module to generate.
        ; This won't account for any modules using it during ModuleInit, but
        ; that should be pretty rare (or at least rare from within IRQ-sensitive
        ; code)
        MOV     R0, #9
        MOV     R1, #2
        SWI     XOS_ReadSysInfo

  [ UseNewFX0Error
        ; Also, *FX 0
        BL      InitNewFX0Error
  ]
  [ DebugROMInit
        SWI     XOS_WriteS
        =       "Service_PostInit",0
        SWI     XOS_NewLine
  ]
        MOV     r1, #Service_PostInit   ; issue post-initialisation service
        BL      Issue_Service

; New code added here by TMD 01-Apr-92
; Changed to use OS_LeaveOS 16-Oct-02

  [ DebugROMInit
        SWI     XOS_WriteS
        =       "callbacks",0
        SWI     XOS_NewLine
  ]
        SWI     XOS_LeaveOS
        SWI     XOS_EnterOS             ; switch back to SVC mode (IRQs, FIQs enabled)
  [ :LNOT: HAL :LAND: RO371Timings
        BL      finalmemoryspeed
  ]
; end of added code

     [ International                    ; Open the kernel messages file.
        LDR     r0, =ZeroPage+KernelMessagesBlock+4
        ADR     r1, MessageFileName
        MOV     r2, #0                  ; Use file directly.
        SWI     XMessageTrans_OpenFile
        MOVVC   r0, #-1
      [ ZeroPage = 0
        STRVC   r0, [r0, #KernelMessagesBlock+1]  ; Message file is now open.
      |
        LDR     lr, =ZeroPage
        STRVC   r0, [lr, #KernelMessagesBlock]  ; Message file is now open.
      ]
     ]

SkipHardResetPart2                      ; code executed on all types of reset
      [ International
        LDR     r0, =ZeroPage
        LDR     r1, [r0, #KernelMessagesBlock] ; if we've managed to open message file
        TEQ     r1, #0
        ASSERT  (ZeroPage :AND: 255) = 0
        STRNEB  r0, [r0, #ErrorSemaphore] ; then allow errors to be translated
      ]

      [ DoInitialiseMode :LOR: :LNOT: Embedded_UI
        BL      InitialiseMode
      ]
    [ :LNOT: Embedded_UI
        LDR     R0, =ZeroPage
        LDRB    R14, [R0, #MentionCMOSReset]
        TEQ     R14, #0
        BEQ     %FT12
      [ International
        SWI     XOS_WriteI+10
        BVS     %FT09
        BL      WriteS_Translated
        =       "CmosRst:CMOS RAM reset, press ESCAPE to continue",0
        ALIGN
09
      |
        SWI     XOS_WriteS
        =       10,"CMOS RAM reset, press ESCAPE to continue",0
        ALIGN
      ]
10
        SWI     XOS_ReadEscapeState
        BCC     %BT10
        MOV     R0, #124
        SWI     XOS_Byte                ; Clear the condition
        SWI     XOS_WriteI+12           ; Clear the screen
12
        SWI     XOS_WriteS
        =       10, "$SystemName ", 0   ; now RISC OS (no +) again
        ALIGN

        MOV     R0, #8
        ORR     R0, R0, #&500
        SWI     XOS_Memory              ; returns amount of soft ROM (pages) in r1
        MOVVS   R1, #0

        LDR     R0, =ZeroPage
        LDR     R0, [R0, #RAMLIMIT]
        MLA     R0, R1, R2, R0          ; convert pages to bytes and add in

        MOV     R0, R0, LSR #20         ; /(1024*1024) down to megabytes
        LDR     R1, =GeneralMOSBuffer
        MOV     R2, #?GeneralMOSBuffer
        SWI     XOS_ConvertInteger4
        SWI     XOS_Write0
        SWI     XOS_WriteS
        =       "MB", 10,13, 10, 0      ; title complete
        ALIGN

        BL      ARM_PrintProcessorType
    |
        ! 0,    "Banner & printing of processor type disabled"
    ]

        MOV     r0, #0                  ; Set DomainId to 0 every reset
      [ ZeroPage = 0
        STR     r0, [r0, #DomainId]     ; before calling anyone
      |
        LDR     r1, =ZeroPage
        STR     r0, [r1, #DomainId]     ; before calling anyone
      ]

; issue reset service call

        MOV     R1, #Service_Reset
        SWI     XOS_ServiceCall

; now set up the default FIQ owner

        MOV     R1, #Service_ClaimFIQ
        SWI     XOS_ServiceCall

        MOV     R1, #Service_ReleaseFIQ
        SWI     XOS_ServiceCall

 [ SoftResets :LAND: STB
        ! 0, "!!!! SoftReset is true => resets close all open files !!!!"
        MOV     R0, #FSControl_Shut     ; Open files get closed at reset
        SWI     XOS_FSControl
 ]

        BL      PostInit

        MOV     r0, #&FD                ; read last reset type (again!)
        MOV     r1, #0
        MOV     r2, #&FF
        SWI     XOS_Byte
        CMP     r1, #SoftReset          ; a softie?
        SWINE   XOS_WriteI+7            ; go beep! Yaay!

; Now that ROM modules have mostly finished allocating memory, move a large
; chunk of the free memory from the free pool into application space so that
; the boot sequence and configured language have something to play around with
; (particularly if booting into BASIC!)
; However be careful not to move everything, otherwise anything which locks
; application space during boot could cripple important background processes
; like USB
        Push    "r1"
        LDR     r0, =ZeroPage
        LDR     r1, [r0, #AplWorkSize]
        LDR     r0, [r0, #FreePoolDANode+DANode_Size]
        SUB     r1, r1, #32*1024
        SUB     r1, r1, r0
        MOV     r1, r1, ASR #1          ; 50% each sounds fair
        MOV     r0, #ChangeDyn_FreePool
        SWI     XOS_ChangeDynamicArea
        Pull    "r1"

        CMP     r1, #PowerOnReset
        BNE     %FT75

 [ HAL :LAND: CheckProtectionLink
        LDR     r1, =ZeroPage+HAL_StartFlags
        LDR     r1, [r1]
        TST     r1, #OSStartFlag_NoCMOSReset
        BNE     %FT75
 |
      [ CheckProtectionLink
        LDR     r1, =IOMD_MonitorType   ; check link bit again
        LDRB    r1, [r1]                ; no need to preload bus, since should
        TST     r1, #IOMD_ProtectionLinkBit ; be still there from earlier
        BEQ     %FT75                   ; zero => protected
      ]
 ]


; if any monitor key pressed, reconfigure, otherwise hang around for a bit
; till keys get a chance to come in again after being reset for the umpteenth
; time by yet another keyboard handler! SKS 07-Jun-88

        LDR     r3, =ZeroPage
        LDR     r3, [r3, #MetroGnome]
 [ EmulatorSupport
        ARM_on_emulator r0
        ADDEQ   r3, r3, #1
        ADDNE   r3, r3, #10             ; Hang about for a little while
 |
        ADD     r3, r3, #10             ; Hang about for a little while
 ]

KeypadStar_key  * -92

HorologicalDelayLoop1
        MOV     r0, #&79                        ; scan keyboard
        MOV     r1, #&FF                        ; starting at (&FF + 1) AND &FF
60
        ADD     r1, r1, #1
        AND     r1, r1, #&FF
        SWI     XOS_Byte
        TEQ     r1, #&FF                        ; if no key down
        BEQ     %FT70                           ; then check if we've run out of time

        ADR     r2, MonitorKeypadTable
62
        LDRB    r14, [r2], #2                   ; search for key in table
        TEQ     r14, #&FF
        BEQ     %FT70
        TEQ     r1, r14
        BNE     %BT62
        LDRB    r3, [r2, #-1]                   ; get corresponding CMOS bits
        MOV     r0, #ReadCMOS
        MOV     r1, #VduCMOS
        SWI     XOS_Byte
        BIC     r2, r2, #MonitorTypeBits
        ORR     r2, r2, r3
        MOV     r0, #WriteCMOS
        SWI     XOS_Byte

        TEQ     r3, #MonitorTypeAuto            ; if we're setting monitortype auto
        BNE     %FT64
        ADRL    r0, ModeCMOSTable +8            ; then configure mode auto
        LDR     r2, [r0, #-8]                   ; (load auto value)
        BL      WriteMultiField
        ADRL    r0, SyncCMOSTable +8            ; and configure sync auto
        LDR     r2, [r0, #-8]                   ; (load auto value)
        BL      WriteMultiField

64
    [ DoInitialiseMode :LOR: :LNOT: Embedded_UI
        BL      InitialiseMode

      [ International
        SWI     XOS_WriteI+10
        BVS     %FT65
        BL      WriteS_Translated
        =       "MonType:Monitor type reconfigured",10,13,10,0
        ALIGN
65
      |
        SWI     XOS_WriteS
        =       10,"Monitor type reconfigured",10,13,10,0
        ALIGN
      ]
    ]
        B       %FT75

BranchThroughZeroInstruction2
 [ ProcessorVectors
        LDR     PC, .+ProcVec_Branch0
 |
        B       .+Branch0_Trampoline
 ]

        LTORG

MonitorKeypadTable      ; internal key number, CMOS bits
        =       106, MonitorType0
        =       107, MonitorType1
        =       124, MonitorType2
        =       108, MonitorType3
        =       122, MonitorType4
        =       123, MonitorType5
        =       26,  MonitorType6
        =       27,  MonitorType7
        =       42,  MonitorType8
        =       43,  MonitorType9
        =       76,  MonitorTypeAuto    ; keypad dot
        =       &FF
        ALIGN 32

      [ International
MessageFileName DCB     "Resources:$.Resources.Kernel.Messages",0
        ALIGN
      ]

 [ StrongARM :LAND: :LNOT: HAL
cputable
        DCD &6000,0,0
        DCD &6100,1,0
        DCD &7000,2,0
        DCD &7100,3,0
        DCD &8100,4,2_11101
        DCD &a100,5,2_11011 ;corrected for 3.71 (SA does not abort for vector reads in 26-bit mode)
        DCD &7500,6,0
        DCD &7501,7,0
        DCD -1

Processor_Type
        MOV     r0,#IOMD_Base
        LDRB    r1,[r0,#IOMD_ID0]
        CMP     r1,#&E7
        LDRB    r1,[r0,#IOMD_ID1]
        CMPEQ   r1,#&D4
        BEQ     PT_RiscPC               ; E7,D4 means Risc PC
        CMP     r1,#&5B
        MOVEQ   r0,#&7500               ; 5B means 7500
        BEQ     PT_lookup
        CMP     r1,#&AA
        MOVEQ   r0,#&7500
        ORREQ   r0,r0,#&0001            ; AA means 7500FE - mark as 7501
        BEQ     PT_lookup
PT_RiscPC
        ReadCop  R0,CR_ID               ; see data sheets for values
        ; ARM 600 funny
        TST     R0,#&f000
        MOVEQ   R0,R0, LSL #4
        AND     R0,R0,#&ff00
PT_lookup
        ADR     R1,cputable
66
        LDR     R2,[R1],#4
        TEQ     R2,#0
        MOVMI   R0,#0
        STRMI   R2,[R0,#ProcessorType]
        MOVMI   PC,LR
        TEQ     R2,R0
        ADDNE   R1,R1,#8
        BNE     %BT66
        LDMIA   R1,{R0,R2}
        MOV     R1,#0
        STRB    R0,[R1,#ProcessorType]
        STR     R2,[R1,#ProcessorFlags]
        MOV     PC,LR
 ]

70
        LDR     r14, =ZeroPage
        LDR     r14, [r14, #MetroGnome]
        CMP     r14, r3
        BLO     HorologicalDelayLoop1
75


; Deal with SHIFT pressed/SHIFT-BREAK configured:
; do appropriate FSControl if wanted

        Pull    "R0"                    ; first check kbd there

        CMP     R0, #0
        BEQ     AutoBootCosNoKbd

        MOV     R0, #&FF
        MOV     R1, #0
        MOV     R2, #&FF                ; read shifty state
        SWI     XOS_Byte
        AND     R0, R1, #8              ; picka da bit
        EOR     R0, R0, #8              ; invert sense
        Pull    "R1"
        CMP     R1, #0
        MOVNE   R1, #8
        EORS    R1, R1, R0
        BEQ     %FT80

Hortoculture_Kicking
        MOV     R0, #FSControl_BootupFS
        SWI     XOS_FSControl
        BVC     %FT80

        Push    "r3,r4"
        ADD     r1, r0, #4              ; Set Boot$Error if it failed (Desktop will report it).
        ADR     r0, str_booterror
        MOV     r2, #1024               ; Big enough that terminator will be reached.
        MOV     r3, #0
        MOV     r4, #VarType_String
        SWI     XOS_SetVarVal
        SUBVS   r0, r1, #4              ; If setting Boot$Error failed then report original error as before.
        BLVS    PrintError
        SWIVS   XOS_NewLine
        Pull    "r3,r4"
80
; if either * pressed, drop into * prompt, otherwise hang around for a bit
; till keys get a chance to come in again after being reset for the umpteenth
; time by yet another keyboard handler! SKS 01-Jun-88

        LDR     r3, =ZeroPage
        LDR     r3, [r3, #MetroGnome]
 [ EmulatorSupport
        ARM_on_emulator r1
        ADDEQ   r3, r3, #1
        ADDNE   r3, r3, #10             ; Hang about for a little while
 |
        ADD     r3, r3, #10             ; Hang about for a little while
 ]

HorologicalDelayLoop2
        MOV     r1, #KeypadStar_key :AND: &FF
        BL      IsKeyPressedAtReset
        BEQ     DoStartSuper            ; EQ -> start up supervisor

        LDR     r0, =ZeroPage
        LDR     r0, [r0, #MetroGnome]
        CMP     r0, r3
        BLO     HorologicalDelayLoop2


; Start configured language module if keypad-* wasn't pressed

        MOV     R0, #ReadCMOS
        MOV     R1, #LanguageCMOS
        SWI     XOS_Byte

        MOV     R0, #ModHandReason_GetNames
        SUB     R1, R2, #1
        MOV     R2, #0                  ; preferred incarnation
        SWI     XOS_Module
        ADRVSL  R3, UtilityMod
        LDR     R2, [R3, #Module_Title]
        CMP     R2, #0
        ADDNE   R1, R3, R2
DoStartSuper
        ADREQL  R1, UtilModTitle        ; ALWAYS enter via SWI: sets CAO etc.
        MOV     R0, #ModHandReason_Enter
        ADRL    R2, crstring            ; no environment
        SWI     XOS_Module
        CMP     r0, r0                  ; set EQ if failed to enter config.lang
        B       DoStartSuper            ; -> force Super entry


str_booterror   DCB     "Boot$Error",0
                ALIGN


AutoBootCosNoKbd
    [ :LNOT: Embedded_UI
      [ International
        SWI     XOS_WriteI+7
        BVS     %FT81
        BL      WriteS_Translated
        =       "NoKbd:No keyboard present - autobooting", 10,13,0
        ALIGN
81
      |
        SWI     XOS_WriteS
        =       7, "No keyboard present - autobooting", 10,13,0
        ALIGN
      ]
    ]
        B       Hortoculture_Kicking


RealIRQHandler
 [ ProcessorVectors
        LDR     PC, .-&18+ProcVec_IRQ
 |
        B     Initial_IRQ_Code+.-&18
 ]

; +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
; In    r1 = INKEY -ve key code to look for

; Out   EQ: key pressed
;       NE: key not pressed

IsKeyPressedAtReset Entry "r0-r2"

        MOV     r0, #129
        MOV     r2, #&FF
        SWI     XOS_Byte
        TEQ     r1, #&FF
        TEQEQ   r2, #&FF
        EXIT

        END